Puoi utilizzare ML Kit per rilevare i volti in immagini e video simili a selfie.
API di rilevamento della mesh del viso | |
---|---|
Nome dell'SDK | face-mesh-detection |
Implementazione | Il codice e gli asset vengono collegati in modo statico all'app in fase di compilazione. |
Impatto delle dimensioni dell'app | ~6,4 MB |
Prestazioni | In tempo reale sulla maggior parte dei dispositivi. |
Prova
- Prova l'app di esempio per vedere un esempio di utilizzo di questa API.
Prima di iniziare
Nel file
build.gradle
a livello di progetto, assicurati di includere il repository Maven di Google sia nelle sezioni buildscript che in allprojects.Aggiungi la dipendenza per la libreria di rilevamento della mesh del viso di ML Kit al file Gradle a livello di app del modulo, che in genere è
app/build.gradle
:dependencies { // ... implementation 'com.google.mlkit:face-mesh-detection:16.0.0-beta1' }
Linee guida per le immagini di input
Le immagini devono essere scattate a una distanza di circa 2 metri dalla fotocamera del dispositivo, in modo che i volti siano sufficientemente grandi per un riconoscimento ottimale della mesh del viso. In generale, più grande è il volto, migliore è il riconoscimento della mesh del volto.
Il volto deve essere rivolto verso la fotocamera con almeno metà del viso visibile. Qualsiasi oggetto di grandi dimensioni tra il viso e la fotocamera potrebbe comportare una minore precisione.
Se vuoi rilevare i volti in un'applicazione in tempo reale, devi anche considerare le dimensioni complessive dell'immagine di input. Le immagini più piccole possono essere elaborate più velocemente, quindi acquisire immagini a risoluzioni inferiori riduce la latenza. Tuttavia, tieni presente i requisiti di accuratezza riportati sopra e assicurati che il volto del soggetto occupi la maggior parte possibile dell'immagine.
Configurare il rilevatore di mesh del viso
Se vuoi modificare le impostazioni predefinite del rilevatore di mesh del viso, specificale con un oggetto FaceMeshDetectorOptions. Puoi modificare le seguenti impostazioni:
setUseCase
BOUNDING_BOX_ONLY
: fornisce solo un riquadro delimitante per una mesh del viso rilevata. Si tratta del rilevatore di volti più veloce, ma ha una limitazione di raggio d'azione(i volti devono trovarsi a circa 2 metri dalla videocamera).FACE_MESH
(opzione predefinita): fornisce una scatola delimitante e informazioni aggiuntive sul mesh del volto (468 punti 3D e informazioni sui triangoli). Rispetto al caso d'usoBOUNDING_BOX_ONLY
, la latenza aumenta di circa il 15%, come misurato su Pixel 3.
Ad esempio:
Kotlin
val defaultDetector = FaceMeshDetection.getClient( FaceMeshDetectorOptions.DEFAULT_OPTIONS) val boundingBoxDetector = FaceMeshDetection.getClient( FaceMeshDetectorOptions.Builder() .setUseCase(UseCase.BOUNDING_BOX_ONLY) .build() )
Java
FaceMeshDetector defaultDetector = FaceMeshDetection.getClient( FaceMeshDetectorOptions.DEFAULT_OPTIONS); FaceMeshDetector boundingBoxDetector = FaceMeshDetection.getClient( new FaceMeshDetectorOptions.Builder() .setUseCase(UseCase.BOUNDING_BOX_ONLY) .build() );
Prepara l'immagine di input
Per rilevare i volti in un'immagine, crea un oggetto InputImage
da un array di byte Bitmap
, media.Image
, ByteBuffer
o da un file sul dispositivo.
Quindi, passa l'oggetto InputImage
al metodo process
di FaceDetector
.
Per il rilevamento della mesh del viso, devi utilizzare un'immagine con dimensioni di almeno 480 x 360 pixel. Se stai rilevando i volti in tempo reale, acquisire fotogrammi con questa risoluzione minima può contribuire a ridurre la latenza.
Puoi creare un oggetto InputImage
da diverse origini, ognuna delle quali è descritta di seguito.
Utilizzo di un media.Image
Per creare un oggetto InputImage
da un oggetto media.Image
, ad esempio quando acquisisci un'immagine dalla fotocamera di un dispositivo, passa l'oggetto media.Image
e la rotazione dell'immagine a InputImage.fromMediaImage()
.
Se utilizzi la libreria
CameraX, le classi OnImageCapturedListener
e
ImageAnalysis.Analyzer
calcolano il valore di rotazione per te.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
Se non utilizzi una libreria della fotocamera che ti fornisca il grado di rotazione dell'immagine, puoi calcolarlo dal grado di rotazione del dispositivo e dall'orientamento del sensore della fotocamera al suo interno:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Poi, passa l'oggetto media.Image
e il valore del grado di rotazione a InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Utilizzo di un URI file
Per creare un oggetto InputImage
da un URI file, passa il contesto dell'app e l'URI file a
InputImage.fromFilePath()
. Questa operazione è utile quando
utilizzi un'intenzione ACTION_GET_CONTENT
per chiedere all'utente di selezionare
un'immagine dalla sua app Galleria.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Utilizzo di un ByteBuffer
o ByteArray
Per creare un oggetto InputImage
da un ByteBuffer
o un ByteArray
, calcola prima il grado di rotazione dell'immagine come descritto in precedenza per l'input media.Image
.
Quindi, crea l'oggetto InputImage
con il buffer o l'array, insieme all'altezza, alla larghezza, al formato di codifica dei colori e al grado di rotazione dell'immagine:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Utilizzo di un Bitmap
Per creare un oggetto InputImage
da un oggetto Bitmap
, esegui la seguente dichiarazione:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
L'immagine è rappresentata da un oggetto Bitmap
insieme ai gradi di rotazione.
Elabora l'immagine
Passa l'immagine al metodo process
:
Kotlin
val result = detector.process(image) .addOnSuccessListener { result -> // Task completed successfully // … } .addOnFailureListener { e -> // Task failed with an exception // … }
Java
Task<List<FaceMesh>> result = detector.process(image) .addOnSuccessListener( new OnSuccessListener<List<FaceMesh>>() { @Override public void onSuccess(List<FaceMesh> result) { // Task completed successfully // … } }) .addOnFailureListener( new OnFailureListener() { @Override Public void onFailure(Exception e) { // Task failed with an exception // … } });
Ottenere informazioni sulla mesh del volto rilevata
Se nell'immagine viene rilevato un volto, un elenco di oggetti FaceMesh
viene passato all'ascoltatore di eventi di successo. Ogni FaceMesh
rappresenta un volto rilevato nell'immagine. Per ogni mesh del viso, puoi ottenere le coordinate di delimitazione nell'immagine di input, nonché qualsiasi altra informazione che hai configurato per il rilevamento del mesh del viso.
Kotlin
for (faceMesh in faceMeshs) { val bounds: Rect = faceMesh.boundingBox() // Gets all points val faceMeshpoints = faceMesh.allPoints for (faceMeshpoint in faceMeshpoints) { val index: Int = faceMeshpoints.index() val position = faceMeshpoint.position } // Gets triangle info val triangles: List<Triangle<FaceMeshPoint>> = faceMesh.allTriangles for (triangle in triangles) { // 3 Points connecting to each other and representing a triangle area. val connectedPoints = triangle.allPoints() } }
Java
for (FaceMesh faceMesh : faceMeshs) { Rect bounds = faceMesh.getBoundingBox(); // Gets all points List<FaceMeshPoint> faceMeshpoints = faceMesh.getAllPoints(); for (FaceMeshPoint faceMeshpoint : faceMeshpoints) { int index = faceMeshpoints.getIndex(); PointF3D position = faceMeshpoint.getPosition(); } // Gets triangle info List<Triangle<FaceMeshPoint>> triangles = faceMesh.getAllTriangles(); for (Triangle<FaceMeshPoint> triangle : triangles) { // 3 Points connecting to each other and representing a triangle area. List<FaceMeshPoint> connectedPoints = triangle.getAllPoints(); } }