Phát hiện thông tin lưới khuôn mặt bằng Bộ công cụ học máy trên Android

Bạn có thể dùng Bộ công cụ học máy để phát hiện các khuôn mặt trong ảnh và video giống như ảnh chân dung tự chụp.

API Phát hiện lưới khuôn mặt
Tên SDKface-mesh-detection
Triển khaiMã và tài sản được liên kết tĩnh với ứng dụng của bạn tại thời điểm xây dựng.
Tác động của kích thước ứng dụng~6,4 MB
Hiệu suấtTheo thời gian thực trên hầu hết các thiết bị.

Dùng thử

Trước khi bắt đầu

  1. Trong tệp build.gradle cấp dự án, hãy nhớ bao gồm Kho lưu trữ Maven trong cả phần buildscript và allprojects.

  2. Thêm phần phụ thuộc của thư viện phát hiện lưới khuôn mặt của Bộ công cụ học máy vào tệp gradle cấp ứng dụng của mô-đun, thường là app/build.gradle:

    dependencies {
     // ...
    
     implementation 'com.google.mlkit:face-mesh-detection:16.0.0-beta1'
    }
    

Nguyên tắc nhập hình ảnh

  1. Bạn nên chụp hình ảnh cách máy ảnh của thiết bị trong phạm vi ~2 mét (~7 feet), vì vậy khuôn mặt đủ lớn để nhận dạng lưới khuôn mặt tối ưu. Ngang bằng nhìn chung, khuôn mặt càng lớn thì khả năng nhận dạng lưới khuôn mặt càng chính xác.

  2. Khuôn mặt này phải hướng về phía máy ảnh và hiện được ít nhất một nửa khuôn mặt. Bất kỳ vật lớn nào ở giữa khuôn mặt và máy ảnh có thể khiến điện thoại giảm sự chính xác.

Nếu muốn phát hiện khuôn mặt trong ứng dụng theo thời gian thực, bạn cũng nên hãy xem xét kích thước tổng thể của hình ảnh đầu vào. Các hình ảnh nhỏ hơn có thể được xử lý nhanh hơn, nên việc chụp ảnh ở độ phân giải thấp hơn sẽ giảm độ trễ. Tuy nhiên, hãy lưu ý các yêu cầu về độ chính xác ở trên và đảm bảo rằng khuôn mặt của đối tượng chiếm nhiều diện tích hình ảnh nhất có thể.

Định cấu hình trình phát hiện lưới khuôn mặt

Nếu bạn muốn thay đổi bất kỳ chế độ cài đặt mặc định nào của trình phát hiện lưới khuôn mặt, hãy chỉ định những chế độ cài đặt đó với FaceMeshDetectorOptions . Bạn có thể thay đổi các chế độ cài đặt sau:

  1. setUseCase

    • BOUNDING_BOX_ONLY: Chỉ cung cấp một hộp giới hạn cho lưới khuôn mặt được phát hiện. Đây là trình phát hiện khuôn mặt nhanh nhất nhưng bị giới hạn phạm vi(khuôn mặt) phải cách camera trong phạm vi ~2 mét hoặc ~7 feet).

    • FACE_MESH (lựa chọn mặc định): Cung cấp một hộp giới hạn và một khuôn mặt khác thông tin lưới (468 điểm 3D và thông tin tam giác). Khi so sánh với Trường hợp sử dụng BOUNDING_BOX_ONLY, độ trễ tăng thêm khoảng 15%, tính trên Pixel 3.

Ví dụ:

Kotlin

val defaultDetector = FaceMeshDetection.getClient(
  FaceMeshDetectorOptions.DEFAULT_OPTIONS)

val boundingBoxDetector = FaceMeshDetection.getClient(
  FaceMeshDetectorOptions.Builder()
    .setUseCase(UseCase.BOUNDING_BOX_ONLY)
    .build()
)

Java

FaceMeshDetector defaultDetector =
        FaceMeshDetection.getClient(
                FaceMeshDetectorOptions.DEFAULT_OPTIONS);

FaceMeshDetector boundingBoxDetector = FaceMeshDetection.getClient(
        new FaceMeshDetectorOptions.Builder()
                .setUseCase(UseCase.BOUNDING_BOX_ONLY)
                .build()
        );

Chuẩn bị hình ảnh đầu vào

Để phát hiện các khuôn mặt trong ảnh, hãy tạo một đối tượng InputImage từ Bitmap, media.Image, ByteBuffer, mảng byte hoặc một tệp trên thiết bị. Sau đó, hãy truyền đối tượng InputImage vào phương thức process của FaceDetector.

Để phát hiện lưới khuôn mặt, bạn nên dùng hình ảnh có kích thước tối thiểu 480 x 360 pixel. Nếu bạn đang phát hiện khuôn mặt theo thời gian thực, hãy chụp khung hình ở độ phân giải tối thiểu này có thể giúp giảm độ trễ.

Bạn có thể tạo một InputImage đối tượng từ các nguồn khác nhau, mỗi nguồn được giải thích ở bên dưới.

Sử dụng media.Image

Cách tạo InputImage từ đối tượng media.Image, chẳng hạn như khi bạn chụp ảnh từ một camera của thiết bị, hãy truyền đối tượng media.Image và xoay thành InputImage.fromMediaImage().

Nếu bạn sử dụng Thư viện CameraX, OnImageCapturedListener và Các lớp ImageAnalysis.Analyzer tính toán giá trị xoay cho bạn.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Nếu không sử dụng thư viện máy ảnh cung cấp độ xoay của hình ảnh, bạn có thể tính tỷ lệ khung hình dựa trên độ xoay của thiết bị và hướng của máy ảnh cảm biến trong thiết bị:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Sau đó, hãy truyền đối tượng media.Image và giá trị độ xoay thành InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Sử dụng URI tệp

Cách tạo InputImage từ một URI tệp, hãy chuyển ngữ cảnh ứng dụng và URI tệp đến InputImage.fromFilePath(). Điều này rất hữu ích khi bạn sử dụng ý định ACTION_GET_CONTENT để nhắc người dùng chọn một bức ảnh trong ứng dụng thư viện của họ.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Sử dụng ByteBuffer hoặc ByteArray

Cách tạo InputImage đối tượng từ ByteBuffer hoặc ByteArray, trước tiên hãy tính hình ảnh độ xoay như mô tả trước đây cho đầu vào media.Image. Sau đó, hãy tạo đối tượng InputImage bằng vùng đệm hoặc mảng, cùng với đối tượng chiều cao, chiều rộng, định dạng mã hoá màu và độ xoay:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Sử dụng Bitmap

Cách tạo InputImage qua đối tượng Bitmap, hãy khai báo sau:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Hình ảnh được biểu thị bằng một đối tượng Bitmap cùng với độ xoay.

Xử lý hình ảnh

Truyền hình ảnh vào phương thức process:

Kotlin

val result = detector.process(image)
        .addOnSuccessListener { result ->
            // Task completed successfully
            // …
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // …
        }

Java


Task<List<FaceMesh>> result = detector.process(image)
        .addOnSuccessListener(
                new OnSuccessListener<List<FaceMesh>>() {
                    @Override
                    public void onSuccess(List<FaceMesh> result) {
                        // Task completed successfully
                        // …
                    }
                })
        .addOnFailureListener(
                new OnFailureListener() {
                    @Override
                    Public void onFailure(Exception e) {
                        // Task failed with an exception
                        // …
                    }
                });

Xem thông tin về lưới khuôn mặt đã phát hiện

Nếu phát hiện thấy bất kỳ khuôn mặt nào trong hình ảnh, danh sách đối tượng FaceMesh sẽ được truyền tới trình nghe thành công. Mỗi FaceMesh đại diện cho một khuôn mặt đã được phát hiện trong hình ảnh. Đối với mỗi lưới khuôn mặt, bạn có thể lấy toạ độ giới hạn trong dữ liệu đầu vào hình ảnh, cũng như bất kỳ thông tin nào khác mà bạn đã định cấu hình lưới khuôn mặt trình phát hiện để tìm.

Kotlin

for (faceMesh in faceMeshs) {
    val bounds: Rect = faceMesh.boundingBox()

    // Gets all points
    val faceMeshpoints = faceMesh.allPoints
    for (faceMeshpoint in faceMeshpoints) {
      val index: Int = faceMeshpoints.index()
      val position = faceMeshpoint.position
    }

    // Gets triangle info
    val triangles: List<Triangle<FaceMeshPoint>> = faceMesh.allTriangles
    for (triangle in triangles) {
      // 3 Points connecting to each other and representing a triangle area.
      val connectedPoints = triangle.allPoints()
    }
}

Java

for (FaceMesh faceMesh : faceMeshs) {
    Rect bounds = faceMesh.getBoundingBox();

    // Gets all points
    List<FaceMeshPoint> faceMeshpoints = faceMesh.getAllPoints();
    for (FaceMeshPoint faceMeshpoint : faceMeshpoints) {
        int index = faceMeshpoints.getIndex();
        PointF3D position = faceMeshpoint.getPosition();
    }

    // Gets triangle info
    List<Triangle<FaceMeshPoint>> triangles = faceMesh.getAllTriangles();
    for (Triangle<FaceMeshPoint> triangle : triangles) {
        // 3 Points connecting to each other and representing a triangle area.
        List<FaceMeshPoint> connectedPoints = triangle.getAllPoints();
    }
}