Wykrywanie informacji o siatce twarzy za pomocą ML Kit na Androidzie

Za pomocą pakietu ML Kit możesz wykrywać twarze na zdjęciach i filmach przypominających selfie.

Face Mesh Detection API
Nazwa pakietu SDKface-mesh-detection
ImplementacjaW momencie kompilacji kod i zasoby są statycznie połączone z aplikacją.
Wpływ rozmiaru aplikacjiOk.6,4 MB
Wydajnośćw czasie rzeczywistym na większości urządzeń.

Wypróbuj

Zanim zaczniesz

  1. W pliku build.gradle na poziomie projektu dodaj repozytorium Maven Google zarówno w sekcji buildscript, jak i w sekcji allprojects.

  2. Dodaj zależność z biblioteką wykrywania siatki twarzy ML Kit do pliku Gradle na poziomie aplikacji modułu. Jest to zwykle app/build.gradle:

    dependencies {
     // ...
    
     implementation 'com.google.mlkit:face-mesh-detection:16.0.0-beta1'
    }
    

Wytyczne dotyczące obrazu wejściowego

  1. Zdjęcia powinny być wykonywane w odległości około 2 metrów od kamery urządzenia, aby twarze były wystarczająco duże, aby umożliwić optymalne rozpoznawanie twarzy. Ogólnie rzecz biorąc, im większa twarz, tym lepsze rozpoznawanie siatki.

  2. Twarz powinna być skierowana w stronę aparatu, a co najmniej połowa twarzy powinna być widoczna. Duży obiekt znajdujący się między twarzą a aparatem może zmniejszyć dokładność.

Jeśli chcesz wykrywać twarze w aplikacjach działających w czasie rzeczywistym, musisz też wziąć pod uwagę ogólne wymiary obrazu wejściowego. Mniejsze obrazy można przetwarzać szybciej, więc robienie obrazów w niższej rozdzielczości skraca czas oczekiwania. Trzeba jednak pamiętać o powyższych wymaganiach dotyczących dokładności i zadbać o to, aby twarz obiektu zajmowała jak najwięcej miejsca na zdjęciu.

Skonfiguruj detektor siatki twarzy

Jeśli chcesz zmienić domyślne ustawienia detektora siatki twarzy, określ te ustawienia za pomocą obiektu FaceMeshDetectorOptions. Można zmienić następujące ustawienia:

  1. setUseCase

    • BOUNDING_BOX_ONLY: udostępnia ramkę ograniczającą dla wykrytej siatki twarzy. To najszybszy wykrywacz twarzy, który ma jednak ograniczony zasięg(twarze muszą znajdować się w odległości maksymalnie 2 metrów od kamery).

    • FACE_MESH (opcja domyślna): zawiera ramkę ograniczającą i dodatkowe informacje o siatce twarzy (468 punktów 3D i informacje o trójkącie). W porównaniu z przypadkiem użycia funkcji BOUNDING_BOX_ONLY czas oczekiwania wzrasta o około 15% (zgodnie z pomiarem na Pixelu 3).

Na przykład:

Kotlin

val defaultDetector = FaceMeshDetection.getClient(
  FaceMeshDetectorOptions.DEFAULT_OPTIONS)

val boundingBoxDetector = FaceMeshDetection.getClient(
  FaceMeshDetectorOptions.Builder()
    .setUseCase(UseCase.BOUNDING_BOX_ONLY)
    .build()
)

Java

FaceMeshDetector defaultDetector =
        FaceMeshDetection.getClient(
                FaceMeshDetectorOptions.DEFAULT_OPTIONS);

FaceMeshDetector boundingBoxDetector = FaceMeshDetection.getClient(
        new FaceMeshDetectorOptions.Builder()
                .setUseCase(UseCase.BOUNDING_BOX_ONLY)
                .build()
        );

Przygotowywanie obrazu wejściowego

Aby wykrywać twarze na obrazie, utwórz obiekt InputImage na podstawie Bitmap, media.Image, ByteBuffer, tablicy bajtów lub pliku na urządzeniu. Następnie przekaż obiekt InputImage do metody process interfejsu FaceDetector.

Do wykrywania siatki twarzy należy używać obrazu o wymiarach co najmniej 480 x 360 pikseli. Jeśli wykrywasz twarze w czasie rzeczywistym, rejestrowanie klatek przy tej minimalnej rozdzielczości może zmniejszyć opóźnienie.

Obiekt InputImage możesz utworzyć z różnych źródeł. Poniżej znajdziesz opis każdego z nich.

Korzystanie z: media.Image

Aby utworzyć obiekt InputImage na podstawie obiektu media.Image, na przykład podczas rejestrowania obrazu aparatem urządzenia, przekaż obiekt media.Image i obrót obrazu do InputImage.fromMediaImage().

Jeśli używasz biblioteki AparatuX, klasy OnImageCapturedListener i ImageAnalysis.Analyzer obliczają wartość obrotu za Ciebie.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Jeśli nie korzystasz z biblioteki aparatu, która określa stopień obrotu obrazu, możesz go obliczyć na podstawie stopnia obrotu urządzenia i orientacji czujnika aparatu w urządzeniu:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Następnie przekaż obiekt media.Image i wartość stopnia obrotu do InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Za pomocą identyfikatora URI pliku

Aby utworzyć obiekt InputImage na podstawie identyfikatora URI pliku, przekaż do InputImage.fromFilePath() kontekst aplikacji i identyfikator URI pliku. Jest to przydatne, gdy używasz intencji ACTION_GET_CONTENT, aby zachęcić użytkownika do wybrania obrazu z aplikacji galerii.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Przy użyciu: ByteBuffer lub ByteArray

Aby utworzyć obiekt InputImage na podstawie ByteBuffer lub ByteArray, najpierw oblicz stopień obrotu obrazu zgodnie z wcześniejszym opisem dla danych wejściowych media.Image. Następnie utwórz obiekt InputImage z buforem lub tablicą i podaj wysokość, szerokość, format kodowania kolorów i stopień obrotu:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Korzystanie z: Bitmap

Aby utworzyć obiekt InputImage z obiektu Bitmap, wypełnij tę deklarację:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Obraz jest reprezentowany przez obiekt Bitmap wraz z informacją o obróceniu w stopniach.

Przetwarzanie obrazu

Przekaż obraz do metody process:

Kotlin

val result = detector.process(image)
        .addOnSuccessListener { result ->
            // Task completed successfully
            // …
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // …
        }

Java


Task<List<FaceMesh>> result = detector.process(image)
        .addOnSuccessListener(
                new OnSuccessListener<List<FaceMesh>>() {
                    @Override
                    public void onSuccess(List<FaceMesh> result) {
                        // Task completed successfully
                        // …
                    }
                })
        .addOnFailureListener(
                new OnFailureListener() {
                    @Override
                    Public void onFailure(Exception e) {
                        // Task failed with an exception
                        // …
                    }
                });

Uzyskiwanie informacji o wykrytej siatce twarzy

Jeśli na obrazie zostanie wykryta twarz, do detektora powodzenia zostanie przekazana lista obiektów FaceMesh. Każdy obiekt FaceMesh oznacza twarz wykrytej na zdjęciu. W przypadku każdej siatki twarzy możesz uzyskać współrzędne ograniczające z obrazu wejściowego, a także inne informacje, które skonfigurowałeś do wykrywania siatki twarzy.

Kotlin

for (faceMesh in faceMeshs) {
    val bounds: Rect = faceMesh.boundingBox()

    // Gets all points
    val faceMeshpoints = faceMesh.allPoints
    for (faceMeshpoint in faceMeshpoints) {
      val index: Int = faceMeshpoints.index()
      val position = faceMeshpoint.position
    }

    // Gets triangle info
    val triangles: List<Triangle<FaceMeshPoint>> = faceMesh.allTriangles
    for (triangle in triangles) {
      // 3 Points connecting to each other and representing a triangle area.
      val connectedPoints = triangle.allPoints()
    }
}

Java

for (FaceMesh faceMesh : faceMeshs) {
    Rect bounds = faceMesh.getBoundingBox();

    // Gets all points
    List<FaceMeshPoint> faceMeshpoints = faceMesh.getAllPoints();
    for (FaceMeshPoint faceMeshpoint : faceMeshpoints) {
        int index = faceMeshpoints.getIndex();
        PointF3D position = faceMeshpoint.getPosition();
    }

    // Gets triangle info
    List<Triangle<FaceMeshPoint>> triangles = faceMesh.getAllTriangles();
    for (Triangle<FaceMeshPoint> triangle : triangles) {
        // 3 Points connecting to each other and representing a triangle area.
        List<FaceMeshPoint> connectedPoints = triangle.getAllPoints();
    }
}