Bilder mit ML Kit auf Android-Geräten mit Labels versehen

Mit ML Kit können Sie in einem Bild erkannte Objekte mit Labels versehen. Das mit ML Kit bereitgestellte Standardmodell unterstützt mehr als 400 verschiedene Labels.

FunktionNicht gebündeltGebündelt
ImplementierungDas Modell wird dynamisch über die Google Play-Dienste heruntergeladen.Das Modell ist bei der Erstellung statisch mit Ihrem verknüpft.
App-GrößeCa. 200 KBCa. 5,7 MB
InitialisierungszeitMöglicherweise müssen Sie warten, bis das Modell heruntergeladen wurde.Modell ist sofort verfügbar

Testen

  • Probieren Sie die Beispiel-App aus, um sich ein Anwendungsbeispiel dieser API anzusehen.

Hinweis

  1. Achten Sie darauf, dass Sie in Ihrer build.gradle-Datei auf Projektebene das Maven-Repository von Google in die Abschnitte buildscript und allprojects aufnehmen.

  2. Fügen Sie die Abhängigkeiten für die ML Kit-Android-Bibliotheken in die Gradle-Datei des Moduls auf App-Ebene ein. Diese ist normalerweise app/build.gradle. Wählen Sie je nach Ihren Anforderungen eine der folgenden Abhängigkeiten aus:

    So bündeln Sie das Modell mit Ihrer App:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:image-labeling:17.0.7'
    }
    

    So verwenden Sie das Modell in den Google Play-Diensten:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-image-labeling:16.0.8'
    }
    
  3. Wenn Sie das Modell in den Google Play-Diensten verwenden, können Sie Ihre App so konfigurieren, dass das Modell automatisch auf das Gerät heruntergeladen wird, nachdem es über den Play Store installiert wurde. Fügen Sie dazu der Datei AndroidManifest.xml Ihrer Anwendung die folgende Deklaration hinzu:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="ica" >
          <!-- To use multiple models: android:value="ica,model2,model3" -->
    </application>
    

    Sie können die Modellverfügbarkeit auch explizit überprüfen und den Download über die ModuleInstallClient API der Google Play-Dienste anfordern.

    Wenn Sie das Herunterladen von Modellen während der Installation nicht aktivieren oder einen expliziten Download anfordern, wird das Modell beim ersten Ausführen des Labelers heruntergeladen. Anfragen, die vor dem Download eingehen, führen zu keinem Ergebnis.

Jetzt können Sie Bildern Labels hinzufügen.

1. Eingabebild vorbereiten

Erstellen Sie ein InputImage-Objekt aus Ihrem Image. Der Image-Labelersteller wird am schnellsten ausgeführt, wenn Sie eine Bitmap oder, wenn Sie die Camera2 API verwenden, eine YUV_420_888-media.Image verwenden, die nach Möglichkeit empfohlen wird.

Sie können ein InputImage-Objekt aus verschiedenen Quellen erstellen. Dies wird im Folgenden erläutert.

Mit einem media.Image

Wenn Sie ein InputImage-Objekt aus einem media.Image-Objekt erstellen möchten, z. B. wenn Sie ein Bild von der Kamera eines Geräts aufnehmen, übergeben Sie das Objekt media.Image und die Rotation des Bildes an InputImage.fromMediaImage().

Wenn Sie die KameraX-Bibliothek verwenden, berechnen die Klassen OnImageCapturedListener und ImageAnalysis.Analyzer den Rotationswert für Sie.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Wenn Sie keine Kamerabibliothek verwenden, die Ihnen den Grad der Drehung des Bildes angibt, können Sie ihn anhand des Grads der Drehung und der Ausrichtung des Kamerasensors im Gerät berechnen:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Übergeben Sie dann das Objekt media.Image und den Rotationsgradwert an InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Datei-URI verwenden

Übergeben Sie den Anwendungskontext und den Datei-URI an InputImage.fromFilePath(), um ein InputImage-Objekt aus einem Datei-URI zu erstellen. Dies ist nützlich, wenn Sie den Intent ACTION_GET_CONTENT verwenden, um den Nutzer aufzufordern, ein Bild aus der Galerie-App auszuwählen.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Mit ByteBuffer oder ByteArray

Berechnen Sie zum Erstellen eines InputImage-Objekts aus einem ByteBuffer oder einem ByteArray zuerst den Grad der Bilddrehung, wie zuvor für die media.Image-Eingabe beschrieben. Erstellen Sie dann das Objekt InputImage mit dem Zwischenspeicher oder Array, zusammen mit Höhe, Breite, Farbcodierungsformat und Rotationsgrad des Bildes:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Mit einem Bitmap

Erstellen Sie zum Anlegen eines InputImage-Objekts aus einem Bitmap-Objekt die folgende Deklaration:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Das Bild wird durch ein Bitmap-Objekt zusammen mit einem Rotationsgrad dargestellt.

2. Image-Labelersteller konfigurieren und ausführen

Übergeben Sie das Objekt InputImage an die Methode process von ImageLabeler, um Objekte in einem Bild mit Labels zu versehen.

  1. Rufen Sie zuerst eine Instanz von ImageLabeler ab.

    Wenn Sie den Labelersteller für Bilder auf dem Gerät verwenden möchten, müssen Sie die folgende Deklaration angeben:

Kotlin

// To use default options:
val labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS)

// Or, to set the minimum confidence required:
// val options = ImageLabelerOptions.Builder()
//     .setConfidenceThreshold(0.7f)
//     .build()
// val labeler = ImageLabeling.getClient(options)

Java

// To use default options:
ImageLabeler labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS);

// Or, to set the minimum confidence required:
// ImageLabelerOptions options =
//     new ImageLabelerOptions.Builder()
//         .setConfidenceThreshold(0.7f)
//         .build();
// ImageLabeler labeler = ImageLabeling.getClient(options);
  1. Übergeben Sie dann das Bild an die Methode process():

Kotlin

labeler.process(image)
        .addOnSuccessListener { labels ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

labeler.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
            @Override
            public void onSuccess(List<ImageLabel> labels) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

3. Informationen zu Objekten mit Labeln abrufen

Wenn das Labeling des Bildes erfolgreich ist, wird eine Liste der Objekte vom Typ ImageLabel an den Erfolgs-Listener übergeben. Jedes ImageLabel-Objekt stellt ein Element dar, das im Bild mit einem Label versehen wurde. Das Basismodell unterstützt 400+ verschiedene Labels. Sie können die Textbeschreibung der einzelnen Labels, alle vom Modell unterstützten Labels und den Konfidenzwert der Übereinstimmung abrufen. Beispiel:

Kotlin

for (label in labels) {
    val text = label.text
    val confidence = label.confidence
    val index = label.index
}

Java

for (ImageLabel label : labels) {
    String text = label.getText();
    float confidence = label.getConfidence();
    int index = label.getIndex();
}

Tipps zur Verbesserung der Echtzeitleistung

Wenn Sie Bilder in einer Echtzeitanwendung mit Labels versehen möchten, beachten Sie die folgenden Best Practices, um die besten Framerates zu erzielen:

  • Wenn Sie die API Camera oder camera2 verwenden, drosseln Sie Aufrufe an den Labelersteller von Bildern. Wenn während der Ausführung des Labelerstellers ein neuer Videoframe verfügbar ist, lassen Sie den Frame los. Ein Beispiel finden Sie in der Kurzanleitungs-Beispielanwendung in der Klasse VisionProcessorBase.
  • Achten Sie bei Verwendung der CameraX API darauf, dass die Rückdruckstrategie auf den Standardwert ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST festgelegt ist. Dadurch wird garantiert, dass jeweils nur ein Bild zur Analyse übermittelt wird. Wenn das Analyseprogramm ausgelastet ist, werden mehr Bilder erstellt, damit sie nicht zur Auslieferung in die Warteschlange gestellt werden. Sobald das analysierte Bild durch Aufrufen von ImageProxy.close() geschlossen wird, wird das nächste neueste Bild gesendet.
  • Wenn Sie die Ausgabe des Bild-Labelers verwenden, um Grafiken auf dem Eingabebild einzublenden, rufen Sie zuerst das Ergebnis aus ML Kit ab und rendern dann das Bild und das Overlay in einem einzigen Schritt. Wird für jeden Eingabeframe nur einmal auf der Anzeigeoberfläche gerendert. Ein Beispiel findest du in den Beispielklassen CameraSourcePreview und GraphicOverlay.
  • Wenn Sie die Camera2 API verwenden, nehmen Sie Bilder im Format ImageFormat.YUV_420_888 auf. Wenn Sie die ältere Camera API verwenden, nehmen Sie Bilder im Format ImageFormat.NV21 auf.