ติดป้ายกำกับรูปภาพด้วย ML Kit บน Android

คุณสามารถใช้ ML Kit เพื่อติดป้ายกำกับวัตถุที่ระบบจดจำได้ในรูปภาพ โมเดลเริ่มต้นที่มาพร้อมกับ ML Kit รองรับป้ายกำกับต่างๆ กว่า 400 รายการ

ฟีเจอร์ไม่ได้รวมกลุ่มรวมกลุ่ม
การใช้งานระบบจะดาวน์โหลดโมเดลแบบไดนามิกผ่านบริการ Google Playโมเดลจะลิงก์แบบคงที่กับเวลาสร้าง
ขนาดแอปเพิ่มขนาดประมาณ 200 KBเพิ่มขนาดประมาณ 5.7 MB
เวลาที่ใช้ในการเริ่มต้นคุณอาจต้องรอให้โมเดลดาวน์โหลดก่อนใช้งานครั้งแรกโมเดลพร้อมใช้งานทันที

ลองเลย

ก่อนเริ่มต้น

  1. ในไฟล์ build.gradle ระดับโปรเจ็กต์ ให้ตรวจสอบว่าได้ใส่ที่เก็บ Maven ของ Google ไว้ทั้งในส่วน buildscript และ allprojects

  2. เพิ่ม Dependency สำหรับคลัง ML Kit สำหรับ Android ลงในไฟล์ Gradle ระดับแอปของโมดูล ซึ่งมักจะเป็น app/build.gradle เลือก 1 ในข้อกำหนดต่อไปนี้ตามความต้องการของคุณ

    สำหรับการรวมโมเดลกับแอป

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:image-labeling:17.0.9'
    }
    

    สำหรับการใช้โมเดลในบริการ Google Play

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-image-labeling:16.0.8'
    }
    
  3. หากเลือกใช้โมเดลใน Google Play Services คุณจะกำหนดค่าแอปให้ดาวน์โหลดโมเดลลงในอุปกรณ์โดยอัตโนมัติได้หลังจากที่ติดตั้งแอปจาก Play Store โดยเพิ่มประกาศต่อไปนี้ลงในไฟล์ AndroidManifest.xml ของแอป

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="ica" >
          <!-- To use multiple models: android:value="ica,model2,model3" -->
    </application>
    

    นอกจากนี้ คุณยังตรวจสอบความพร้อมใช้งานของโมเดลและขอดาวน์โหลดได้อย่างชัดเจนผ่าน ModuleInstallClient API ของบริการ Google Play

    หากคุณไม่ได้เปิดใช้การดาวน์โหลดโมเดลขณะติดตั้งหรือขอการดาวน์โหลดอย่างชัดแจ้ง ระบบจะดาวน์โหลดโมเดลเมื่อคุณเรียกใช้โปรแกรมติดป้ายกำกับเป็นครั้งแรก คำขอที่คุณส่งก่อนการดาวน์โหลดเสร็จสมบูรณ์จะไม่มีผล

ตอนนี้คุณก็พร้อมติดป้ายกำกับรูปภาพแล้ว

1. เตรียมรูปภาพอินพุต

สร้างออบเจ็กต์ InputImage จากรูปภาพ เครื่องมือติดป้ายกำกับรูปภาพจะทำงานได้เร็วที่สุดเมื่อคุณใช้ Bitmap หรือหากใช้ Camera2 API ให้ใช้ YUV_420_888 media.Image ซึ่งเราขอแนะนำให้ใช้เมื่อเป็นไปได้

คุณสร้างออบเจ็กต์ InputImage ได้จากแหล่งที่มาต่างๆ ซึ่งแต่ละแหล่งที่มามีคำอธิบายอยู่ด้านล่าง

การใช้ media.Image

หากต้องการสร้างออบเจ็กต์ InputImage จากออบเจ็กต์ media.Image เช่น เมื่อคุณจับภาพจากกล้องของอุปกรณ์ ให้ส่งออบเจ็กต์ media.Image และการหมุนของรูปภาพไปยัง InputImage.fromMediaImage()

หากคุณใช้ไลบรารี CameraX คลาส OnImageCapturedListener และ ImageAnalysis.Analyzer จะคํานวณค่าการหมุนให้คุณ

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

หากไม่ได้ใช้คลังกล้องที่ระบุองศาการหมุนของรูปภาพ คุณสามารถคำนวณจากองศาการหมุนของอุปกรณ์และการวางแนวของเซ็นเซอร์กล้องในอุปกรณ์ได้โดยทำดังนี้

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

จากนั้นส่งออบเจ็กต์ media.Image และค่าองศาการหมุนไปยัง InputImage.fromMediaImage() ดังนี้

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

การใช้ URI ของไฟล์

หากต้องการสร้างออบเจ็กต์ InputImage จาก URI ของไฟล์ ให้ส่งผ่านบริบทแอปและ URI ของไฟล์ไปยัง InputImage.fromFilePath() ซึ่งจะมีประโยชน์เมื่อคุณใช้ Intent ACTION_GET_CONTENT เพื่อแจ้งให้ผู้ใช้เลือกรูปภาพจากแอปแกลเลอรี

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

การใช้ ByteBuffer หรือ ByteArray

หากต้องการสร้างออบเจ็กต์ InputImage จาก ByteBuffer หรือ ByteArray ก่อนอื่นให้คำนวณองศาการหมุนของรูปภาพตามที่อธิบายไว้ก่อนหน้านี้สำหรับอินพุต media.Image จากนั้นสร้างออบเจ็กต์ InputImage ด้วยบัฟเฟอร์หรืออาร์เรย์ พร้อมกับความสูง ความกว้าง รูปแบบการเข้ารหัสสี และองศาการหมุนของรูปภาพ

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

การใช้ Bitmap

หากต้องการสร้างออบเจ็กต์ InputImageจากออบเจ็กต์ Bitmap ให้ประกาศดังนี้

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

รูปภาพแสดงด้วยวัตถุ Bitmap พร้อมองศาการหมุน

2. กําหนดค่าและเรียกใช้โปรแกรมติดป้ายกำกับรูปภาพ

หากต้องการติดป้ายกำกับวัตถุในรูปภาพ ให้ส่งผ่านออบเจ็กต์ InputImage ไปยังเมธอด process ของ ImageLabeler

  1. ก่อนอื่น ให้รับอินสแตนซ์ของ ImageLabeler

    หากต้องการใช้โปรแกรมติดป้ายกำกับรูปภาพในอุปกรณ์ ให้ทำประกาศต่อไปนี้

Kotlin

// To use default options:
val labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS)

// Or, to set the minimum confidence required:
// val options = ImageLabelerOptions.Builder()
//     .setConfidenceThreshold(0.7f)
//     .build()
// val labeler = ImageLabeling.getClient(options)

Java

// To use default options:
ImageLabeler labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS);

// Or, to set the minimum confidence required:
// ImageLabelerOptions options =
//     new ImageLabelerOptions.Builder()
//         .setConfidenceThreshold(0.7f)
//         .build();
// ImageLabeler labeler = ImageLabeling.getClient(options);
  1. จากนั้นส่งรูปภาพไปยังเมธอด process() ดังนี้

Kotlin

labeler.process(image)
        .addOnSuccessListener { labels ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

labeler.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
            @Override
            public void onSuccess(List<ImageLabel> labels) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

3. ดูข้อมูลเกี่ยวกับวัตถุที่ติดป้ายกำกับ

หากการดำเนินการติดป้ายกำกับรูปภาพสำเร็จ ระบบจะส่งรายการออบเจ็กต์ ImageLabel ไปยัง Listener ที่ดำเนินการสำเร็จ ออบเจ็กต์ ImageLabel แต่ละรายการแสดงถึงสิ่งที่ติดป้ายกำกับในรูปภาพ โมเดลพื้นฐานรองรับป้ายกำกับที่แตกต่างกันมากกว่า 400 รายการ คุณสามารถดูคำอธิบายข้อความของป้ายกำกับแต่ละรายการ ดัชนีของป้ายกำกับทั้งหมดที่โมเดลรองรับ และคะแนนความเชื่อมั่นของการจับคู่ เช่น

Kotlin

for (label in labels) {
    val text = label.text
    val confidence = label.confidence
    val index = label.index
}

Java

for (ImageLabel label : labels) {
    String text = label.getText();
    float confidence = label.getConfidence();
    int index = label.getIndex();
}

เคล็ดลับในการปรับปรุงประสิทธิภาพแบบเรียลไทม์

หากต้องการติดป้ายกำกับรูปภาพในแอปพลิเคชันแบบเรียลไทม์ ให้ทำตามหลักเกณฑ์ต่อไปนี้เพื่อให้ได้อัตราเฟรมที่ดีที่สุด

  • หากคุณใช้ Camera หรือ camera2 API ให้จำกัดการเรียกใช้โปรแกรมติดป้ายกำกับรูปภาพ หากเฟรมวิดีโอใหม่พร้อมใช้งานขณะที่โปรแกรมติดป้ายกำกับรูปภาพทำงานอยู่ ให้วางเฟรมนั้น ดูตัวอย่างได้จากคลาส VisionProcessorBase ในแอปตัวอย่างการเริ่มต้นใช้งาน
  • หากคุณใช้ CameraX API ให้ตรวจสอบว่าได้ตั้งค่ากลยุทธ์การลดแรงดันเป็นค่าเริ่มต้นแล้ว ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST วิธีนี้ช่วยให้มั่นใจว่าจะมีการส่งรูปภาพเพียงรูปเดียวเพื่อการวิเคราะห์ในแต่ละครั้ง หากมีการสร้างรูปภาพเพิ่มเติมเมื่อเครื่องมือวิเคราะห์ไม่ว่าง ระบบจะทิ้งรูปภาพเหล่านั้นโดยอัตโนมัติและจะไม่จัดคิวเพื่อนำส่ง เมื่อปิดรูปภาพที่กำลังวิเคราะห์โดยการเรียกใช้ ImageProxy.close() ระบบจะส่งรูปภาพล่าสุดถัดไป
  • หากคุณใช้เอาต์พุตของเครื่องติดป้ายกำกับรูปภาพเพื่อวางกราฟิกซ้อนทับบนรูปภาพอินพุต ให้รับผลลัพธ์จาก ML Kit ก่อน จากนั้นจึงแสดงผลรูปภาพและวางซ้อนในขั้นตอนเดียว การดำเนินการนี้จะแสดงผลบนพื้นผิวการแสดงผลเพียงครั้งเดียวสำหรับเฟรมอินพุตแต่ละเฟรม ดูตัวอย่างได้จากคลาส CameraSourcePreview และ GraphicOverlay ในแอปตัวอย่างการเริ่มต้นใช้งาน
  • หากคุณใช้ Camera2 API ให้จับภาพในรูปแบบ ImageFormat.YUV_420_888 หากคุณใช้ Camera API เวอร์ชันเก่า ให้ถ่ายภาพในรูปแบบ ImageFormat.NV21