Ajouter des libellés à des images avec un modèle entraîné automatiquement sur Android
Une fois que vous avez entraîné votre propre modèle à l'aide d'AutoML Vision Edge, vous pouvez l'utiliser dans votre application pour ajouter des libellés aux images. Il existe deux façons d'intégrer des modèles entraînés à partir d'AutoML Vision Edge: vous pouvez regrouper le modèle en le plaçant dans le dossier d'éléments de votre application, ou vous pouvez le télécharger de manière dynamique depuis Firebase.Options de regroupement de modèles | |
---|---|
Groupé dans votre application |
|
Hébergement avec Firebase |
|
Essayer
- Testez l'application exemple pour voir un exemple d'utilisation de cette API.
Avant de commencer
1. Dans le fichierbuild.gradle
de niveau projet, veillez à inclure
le dépôt Maven de Google à la fois dans les sections
buildscript
et allprojects
.2. Ajoutez les dépendances des bibliothèques Android ML Kit au fichier Gradle de votre module au niveau de l'application, qui est généralement
app/build.gradle
:
Pour regrouper un modèle avec votre application:
dependencies { // ... // Image labeling feature with bundled automl model implementation 'com.google.mlkit:image-labeling-automl:16.2.1' }
linkFirebase
:
dependencies { // ... // Image labeling feature with automl model downloaded // from firebase implementation 'com.google.mlkit:image-labeling-automl:16.2.1' implementation 'com.google.mlkit:linkfirebase:16.0.1' }
1. Charger le modèle
Configurer une source de modèle locale
Pour regrouper le modèle avec votre application:1. Extrayez le modèle et ses métadonnées de l'archive ZIP que vous avez téléchargée depuis la console Firebase. Nous vous recommandons d'utiliser les fichiers tels que vous les avez téléchargés, sans modification (y compris les noms de fichiers).
2. Incluez votre modèle et ses fichiers de métadonnées dans votre package d'application:
a. Si vous ne disposez pas d'un dossier d'éléments dans votre projet, créez-en un en effectuant un clic droit sur le dossier
app/
, puis en cliquant sur New > Folder > Assets Folder (Nouveau > Dossier > Dossier d'éléments).b. Créez un sous-dossier dans le dossier d'éléments pour contenir les fichiers de modèle.
c. Copiez les fichiers
model.tflite
, dict.txt
et manifest.json
dans le sous-dossier (les trois fichiers doivent se trouver dans le même dossier).3. Ajoutez les éléments suivants au fichier
build.gradle
de votre application pour vous assurer que Gradle ne compresse pas le fichier de modèle lors de la compilation de l'application:
android { // ... aaptOptions { noCompress "tflite" } }
Remarque: À partir de la version 4.1 du plug-in Android Gradle, .tflite sera ajouté à la liste noCompress par défaut, et la section ci-dessus n'est plus nécessaire.
4. Créez un objet
LocalModel
en spécifiant le chemin d'accès au fichier manifeste du modèle:
val localModel = AutoMLImageLabelerLocalModel.Builder() .setAssetFilePath("manifest.json") // or .setAbsoluteFilePath(absolute file path to manifest file) .build()
AutoMLImageLabelerLocalModel localModel = new AutoMLImageLabelerLocalModel.Builder() .setAssetFilePath("manifest.json") // or .setAbsoluteFilePath(absolute file path to manifest file) .build();
Configurer une source de modèle hébergée par Firebase
Pour utiliser le modèle hébergé à distance, créez un objet RemoteModel
en spécifiant le nom que vous avez attribué au modèle lorsque vous l'avez publié:
// Specify the name you assigned in the Firebase console. val remoteModel = AutoMLImageLabelerRemoteModel.Builder("your_model_name").build()
// Specify the name you assigned in the Firebase console. AutoMLImageLabelerRemoteModel remoteModel = new AutoMLImageLabelerRemoteModel.Builder("your_model_name").build();
Ensuite, lancez la tâche de téléchargement du modèle, en spécifiant les conditions sous lesquelles vous souhaitez autoriser le téléchargement. Si le modèle n'est pas sur l'appareil ou si une version plus récente du modèle est disponible, la tâche télécharge le modèle de manière asynchrone depuis Firebase:
val downloadConditions = DownloadConditions.Builder() .requireWifi() .build() RemoteModelManager.getInstance().download(remoteModel, downloadConditions) .addOnSuccessListener { // Success. }
DownloadConditions downloadConditions = new DownloadConditions.Builder() .requireWifi() .build(); RemoteModelManager.getInstance().download(remoteModel, downloadConditions) .addOnSuccessListener(new OnSuccessListener() { @Override public void onSuccess(@NonNull Task task) { // Success. } });
De nombreuses applications démarrent la tâche de téléchargement dans leur code d'initialisation, mais vous pouvez le faire à tout moment avant d'avoir besoin d'utiliser le modèle.
Créer un outil de libellé d'image à partir de votre modèle
Après avoir configuré vos sources de modèle, créez un objet ImageLabeler
à partir de l'une d'elles.
Si vous ne disposez que d'un modèle groupé localement, créez simplement un outil de libellé à partir de votre objet AutoMLImageLabelerLocalModel
et configurez le seuil de score de confiance que vous souhaitez exiger (voir Évaluer votre modèle):
val autoMLImageLabelerOptions = AutoMLImageLabelerOptions.Builder(localModel) .setConfidenceThreshold(0) // Evaluate your model in the Firebase console // to determine an appropriate value. .build() val labeler = ImageLabeling.getClient(autoMLImageLabelerOptions)
AutoMLImageLabelerOptions autoMLImageLabelerOptions = new AutoMLImageLabelerOptions.Builder(localModel) .setConfidenceThreshold(0.0f) // Evaluate your model in the Firebase console // to determine an appropriate value. .build(); ImageLabeler labeler = ImageLabeling.getClient(autoMLImageLabelerOptions)
Si vous disposez d'un modèle hébergé à distance, vous devez vérifier qu'il a été téléchargé avant de l'exécuter. Vous pouvez vérifier l'état de la tâche de téléchargement du modèle à l'aide de la méthode isModelDownloaded()
du gestionnaire de modèles.
Bien que vous ne deviez le confirmer qu'avant d'exécuter l'outil de libellé, si vous disposez à la fois d'un modèle hébergé à distance et d'un modèle groupé localement, il peut être judicieux d'effectuer cette vérification lors de l'instanciation de l'outil de libellé d'image: créez un outil de libellé à partir du modèle distant s'il a été téléchargé, et à partir du modèle local dans le cas contraire.
RemoteModelManager.getInstance().isModelDownloaded(remoteModel) .addOnSuccessListener { isDownloaded -> val optionsBuilder = if (isDownloaded) { AutoMLImageLabelerOptions.Builder(remoteModel) } else { AutoMLImageLabelerOptions.Builder(localModel) } // Evaluate your model in the Firebase console to determine an appropriate threshold. val options = optionsBuilder.setConfidenceThreshold(0.0f).build() val labeler = ImageLabeling.getClient(options) }
RemoteModelManager.getInstance().isModelDownloaded(remoteModel) .addOnSuccessListener(new OnSuccessListener() { @Override public void onSuccess(Boolean isDownloaded) { AutoMLImageLabelerOptions.Builder optionsBuilder; if (isDownloaded) { optionsBuilder = new AutoMLImageLabelerOptions.Builder(remoteModel); } else { optionsBuilder = new AutoMLImageLabelerOptions.Builder(localModel); } AutoMLImageLabelerOptions options = optionsBuilder .setConfidenceThreshold(0.0f) // Evaluate your model in the Firebase console // to determine an appropriate threshold. .build(); ImageLabeler labeler = ImageLabeling.getClient(options); } });
Si vous ne disposez que d'un modèle hébergé à distance, vous devez désactiver les fonctionnalités liées au modèle (par exemple, griser ou masquer une partie de votre UI) jusqu'à ce que vous confirmiez que le modèle a été téléchargé. Pour ce faire, joignez un écouteur à la méthode download()
du gestionnaire de modèles:
RemoteModelManager.getInstance().download(remoteModel, conditions) .addOnSuccessListener { // Download complete. Depending on your app, you could enable the ML // feature, or switch from the local model to the remote model, etc. }
RemoteModelManager.getInstance().download(remoteModel, conditions) .addOnSuccessListener(new OnSuccessListener() { @Override public void onSuccess(Void v) { // Download complete. Depending on your app, you could enable // the ML feature, or switch from the local model to the remote // model, etc. } });
2. Préparer l'image d'entrée
Ensuite, pour chaque image que vous souhaitez libeller, créez un objet InputImage
à partir de votre image. L'outil de libellé d'image s'exécute plus rapidement lorsque vous utilisez un Bitmap
ou, si vous utilisez l'API camera2, un media.Image
YUV_420_888, qui sont recommandés dans la mesure du possible.
Vous pouvez créer un objet InputImage
à partir de différentes sources, chacune étant expliquée ci-dessous.
Utiliser un media.Image
Pour créer un objet InputImage
à partir d'un objet media.Image
, par exemple lorsque vous capturez une image à partir de l'appareil photo d'un appareil, transmettez l'objet media.Image
et la rotation de l'image à InputImage.fromMediaImage()
.
Si vous utilisez la bibliothèque
CameraX, les classes OnImageCapturedListener
et ImageAnalysis.Analyzer
calculent la valeur de rotation à votre place.
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
Si vous n'utilisez pas de bibliothèque d'appareil photo qui vous indique le degré de rotation de l'image, vous pouvez le calculer à partir du degré de rotation de l'appareil et de l'orientation du capteur de l'appareil photo dans l'appareil:
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Transmettez ensuite l'objet media.Image
et la valeur de degré de rotation à InputImage.fromMediaImage()
:
val image = InputImage.fromMediaImage(mediaImage, rotation)
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Utiliser un URI de fichier
Pour créer un objet InputImage
à partir d'un URI de fichier, transmettez le contexte de l'application et l'URI de fichier à InputImage.fromFilePath()
. Cela est utile lorsque vous utilisez un intent ACTION_GET_CONTENT
pour inviter l'utilisateur à sélectionner une image dans son application Galerie.
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
InputImage image;
try {
image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
e.printStackTrace();
}
Utiliser un ByteBuffer
ou un ByteArray
Pour créer un objet InputImage
à partir d'un ByteBuffer
ou d'un ByteArray
, commencez par calculer le degré de rotation de l'image comme décrit précédemment pour l'entrée media.Image
.
Créez ensuite l'objet InputImage
avec le tampon ou le tableau, ainsi que la hauteur, la largeur, le format d'encodage des couleurs et le degré de rotation de l'image:
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Utiliser un Bitmap
Pour créer un objet InputImage
à partir d'un objet Bitmap
, effectuez la déclaration suivante:
val image = InputImage.fromBitmap(bitmap, 0)
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
L'image est représentée par un objet Bitmap
avec les degrés de rotation.
3. Exécuter l'outil de libellé d'image
Pour ajouter des libellés aux objets d'une image, transmettez l'objetimage
à la méthode process()
de ImageLabeler
.
labeler.process(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
labeler.process(image) .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() { @Override public void onSuccess(List<ImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. Obtenir des informations sur les objets libellés
Si l'opération de libellé d'image aboutit, une liste d'objets ImageLabel
est transmise à l'écouteur de réussite. Chaque objet ImageLabel
représente un élément qui a été libellé dans l'image. Vous pouvez obtenir la description textuelle de chaque étiquette, le score de confiance de la correspondance et l'indice de la correspondance.
Exemple :
for (label in labels) { val text = label.text val confidence = label.confidence val index = label.index }
for (ImageLabel label : labels) { String text = label.getText(); float confidence = label.getConfidence(); int index = label.getIndex(); }
Conseils pour améliorer les performances en temps réel
Si vous souhaitez ajouter des libellés aux images dans une application en temps réel, suivez ces consignes pour obtenir les meilleurs fréquences d'images:
- Si vous utilisez l'API
Camera
oucamera2
, limitez les appels à l'outil de libellé d'image. Si un nouveau frame vidéo devient disponible pendant l'exécution du libelléur d'images, supprimez-le. Pour obtenir un exemple, consultez la classeVisionProcessorBase
dans l'application exemple de démarrage rapide. - Si vous utilisez l'API
CameraX
, assurez-vous que la stratégie de contre-pression est définie sur sa valeur par défaut,ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
. Cela garantit qu'une seule image sera envoyée pour analyse à la fois. Si d'autres images sont produites lorsque l'analyseur est occupé, elles seront supprimées automatiquement et ne seront pas mises en file d'attente pour la diffusion. Une fois l'image analysée fermée en appelant ImageProxy.close(), la dernière image est envoyée. - Si vous utilisez la sortie du libelléur d'image pour superposer des éléments graphiques à l'image d'entrée, obtenez d'abord le résultat de ML Kit, puis affichez l'image et la superposition en une seule étape. Le rendu n'est effectué sur la surface d'affichage qu'une seule fois pour chaque frame d'entrée. Pour en savoir plus, consultez les classes
CameraSourcePreview
etGraphicOverlay
dans l'application exemple de démarrage rapide. - Si vous utilisez l'API Camera2, capturez des images au format
ImageFormat.YUV_420_888
. Si vous utilisez l'ancienne API Camera, capturez des images au formatImageFormat.NV21
.