Memberikan label pada gambar dengan model yang dilatih AutoML di Android
Setelah Anda melatih model sendiri menggunakan AutoML Vision Edge, Anda dapat menggunakannya di aplikasi untuk memberi label pada gambar. Ada dua cara untuk mengintegrasikan model yang dilatih dari AutoML Vision Edge: Anda dapat memaketkan model dengan memasukkannya ke dalam folder aset aplikasi, atau mendownloadnya secara dinamis dari Firebase.Opsi pemaketan model | |
---|---|
Dipaketkan dalam aplikasi Anda |
|
Dihosting dengan Firebase |
|
Cobalah
- Coba aplikasi contoh untuk melihat contoh penggunaan API ini.
Sebelum memulai
1. Dalam filebuild.gradle
level project, pastikan Anda menyertakan repositori Maven Google di bagian buildscript
dan allprojects
.2. Tambahkan dependensi untuk library Android ML Kit ke modul Anda gradle level aplikasi, yang biasanya adalah
app/build.gradle
:
Untuk memaketkan model dengan aplikasi Anda:
dependencies { // ... // Image labeling feature with bundled automl model implementation 'com.google.mlkit:image-labeling-automl:16.2.1' }Untuk mendownload model dari Firebase secara dinamis, tambahkan
linkFirebase
dependensi:
dependencies { // ... // Image labeling feature with automl model downloaded // from firebase implementation 'com.google.mlkit:image-labeling-automl:16.2.1' implementation 'com.google.mlkit:linkfirebase:16.0.1' }3. Jika ingin mendownload model, pastikan Anda menambahkan Firebase ke project Android, jika Anda belum melakukannya. Tindakan ini tidak diperlukan jika Anda memaketkan model.
1. Memuat model
Mengonfigurasi sumber model lokal
Untuk memaketkan model dengan aplikasi Anda:Akun Layanan 1. Ekstrak model dan metadata-nya dari arsip zip yang Anda download dari Firebase console. Sebaiknya gunakan file sebagaimana yang didownload, tanpa melakukan perubahan (termasuk nama file).
2. Sertakan model Anda dan file metadatanya dalam paket aplikasi Anda:
a. Jika Anda belum memiliki folder aset dalam project, buatlah dengan mengklik kanan folder
app/
, lalu mengklik
New > Folder > Assets Folder.b. Buat subfolder di folder aset untuk menyimpan file model.
c. Salin file
model.tflite
, dict.txt
, dan
manifest.json
ke subfolder tersebut (ketiga file harus berada di
folder yang sama).3. Tambahkan hal berikut ke file
build.gradle
aplikasi untuk memastikan
Gradle tidak mengompresi file model saat mem-build aplikasi:
android { // ... aaptOptions { noCompress "tflite" } }File model akan disertakan dalam paket aplikasi dan tersedia untuk ML Kit sebagai aset mentah.
Catatan: mulai dari plugin Android Gradle versi 4.1, .tflite akan ditambahkan ke daftar noCompress secara default dan baris di atas tidak diperlukan lagi.
4. Membuat objek
LocalModel
, dengan menentukan jalur ke manifes model
file:
Kotlin
val localModel = AutoMLImageLabelerLocalModel.Builder() .setAssetFilePath("manifest.json") // or .setAbsoluteFilePath(absolute file path to manifest file) .build()
Java
AutoMLImageLabelerLocalModel localModel = new AutoMLImageLabelerLocalModel.Builder() .setAssetFilePath("manifest.json") // or .setAbsoluteFilePath(absolute file path to manifest file) .build();
Mengonfigurasi sumber model yang dihosting Firebase
Untuk menggunakan model yang dihosting dari jarak jauh, buat objek RemoteModel
, dengan menentukan nama yang diberikan kepada model saat dipublikasikan:
Kotlin
// Specify the name you assigned in the Firebase console. val remoteModel = AutoMLImageLabelerRemoteModel.Builder("your_model_name").build()
Java
// Specify the name you assigned in the Firebase console. AutoMLImageLabelerRemoteModel remoteModel = new AutoMLImageLabelerRemoteModel.Builder("your_model_name").build();
Kemudian, mulai tugas download model dengan menentukan kondisi yang Anda izinkan untuk diunduh. Jika model tidak ada di perangkat, atau jika model versi baru yang tersedia, tugas ini akan mendownload dari Firebase:
Kotlin
val downloadConditions = DownloadConditions.Builder() .requireWifi() .build() RemoteModelManager.getInstance().download(remoteModel, downloadConditions) .addOnSuccessListener { // Success. }
Java
DownloadConditions downloadConditions = new DownloadConditions.Builder() .requireWifi() .build(); RemoteModelManager.getInstance().download(remoteModel, downloadConditions) .addOnSuccessListener(new OnSuccessListener() { @Override public void onSuccess(@NonNull Task task) { // Success. } });
Banyak aplikasi memulai tugas download dalam kode inisialisasinya, tetapi Anda dapat melakukannya kapan saja sebelum Anda perlu menggunakan model.
Membuat pemberi label gambar dari model Anda
Setelah sumber model dikonfigurasi, buat objek ImageLabeler
dari sumber model
tersebut lebih mendalam.
Jika Anda hanya memiliki model yang dipaketkan secara lokal, cukup buat pemberi label dari objek AutoMLImageLabelerLocalModel
dan konfigurasikan nilai minimum skor keyakinan yang ingin Anda wajibkan (lihat Mengevaluasi model):
Kotlin
val autoMLImageLabelerOptions = AutoMLImageLabelerOptions.Builder(localModel) .setConfidenceThreshold(0) // Evaluate your model in the Firebase console // to determine an appropriate value. .build() val labeler = ImageLabeling.getClient(autoMLImageLabelerOptions)
Java
AutoMLImageLabelerOptions autoMLImageLabelerOptions = new AutoMLImageLabelerOptions.Builder(localModel) .setConfidenceThreshold(0.0f) // Evaluate your model in the Firebase console // to determine an appropriate value. .build(); ImageLabeler labeler = ImageLabeling.getClient(autoMLImageLabelerOptions)
Jika Anda memiliki model yang dihosting dari jarak jauh, Anda harus memeriksa apakah model tersebut sudah
diunduh sebelum Anda menjalankannya. Anda dapat memeriksa status tugas download
model menggunakan metode isModelDownloaded()
pengelola model.
Meskipun Anda hanya perlu mengonfirmasi hal ini sebelum menjalankan pemberi label, jika Anda baik memiliki model yang dihosting dari jarak jauh maupun model yang dipaketkan secara lokal, masuk akal untuk melakukan pemeriksaan ini saat membuat instance pemberi label gambar: buat pemberi label dari model jarak jauh jika telah didownload, dan dari model model sebaliknya.
Kotlin
RemoteModelManager.getInstance().isModelDownloaded(remoteModel) .addOnSuccessListener { isDownloaded -> val optionsBuilder = if (isDownloaded) { AutoMLImageLabelerOptions.Builder(remoteModel) } else { AutoMLImageLabelerOptions.Builder(localModel) } // Evaluate your model in the Firebase console to determine an appropriate threshold. val options = optionsBuilder.setConfidenceThreshold(0.0f).build() val labeler = ImageLabeling.getClient(options) }
Java
RemoteModelManager.getInstance().isModelDownloaded(remoteModel) .addOnSuccessListener(new OnSuccessListener() { @Override public void onSuccess(Boolean isDownloaded) { AutoMLImageLabelerOptions.Builder optionsBuilder; if (isDownloaded) { optionsBuilder = new AutoMLImageLabelerOptions.Builder(remoteModel); } else { optionsBuilder = new AutoMLImageLabelerOptions.Builder(localModel); } AutoMLImageLabelerOptions options = optionsBuilder .setConfidenceThreshold(0.0f) // Evaluate your model in the Firebase console // to determine an appropriate threshold. .build(); ImageLabeler labeler = ImageLabeling.getClient(options); } });
Jika hanya memiliki model yang dihosting dari jarak jauh, Anda harus menonaktifkan model
lainnya—misalnya, menyamarkan atau menyembunyikan sebagian UI—hingga
Anda mengonfirmasi bahwa model telah didownload. Anda dapat melakukannya dengan menambahkan pemroses
ke metode download()
pengelola model:
Kotlin
RemoteModelManager.getInstance().download(remoteModel, conditions) .addOnSuccessListener { // Download complete. Depending on your app, you could enable the ML // feature, or switch from the local model to the remote model, etc. }
Java
RemoteModelManager.getInstance().download(remoteModel, conditions) .addOnSuccessListener(new OnSuccessListener() { @Override public void onSuccess(Void v) { // Download complete. Depending on your app, you could enable // the ML feature, or switch from the local model to the remote // model, etc. } });
2. Menyiapkan gambar input
Selanjutnya, untuk setiap gambar yang ingin Anda beri label, buat objek InputImage
dari gambar Anda. Pemberi label gambar berfungsi secara optimal jika Anda menggunakan Bitmap
atau, jika Anda menggunakan Camera2 API, media.Image
YUV_420_888, yang direkomendasikan jika memungkinkan.
Anda dapat membuat InputImage
dari berbagai sumber, masing-masing akan dijelaskan di bawah ini.
Menggunakan media.Image
Untuk membuat InputImage
dari objek media.Image
, seperti saat Anda mengambil gambar dari
kamera perangkat, teruskan objek media.Image
dan objek
rotasi ke InputImage.fromMediaImage()
.
Jika Anda menggunakan library
CameraX, class OnImageCapturedListener
dan
ImageAnalysis.Analyzer
akan menghitung nilai rotasi
untuk Anda.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
Jika Anda tidak menggunakan pustaka kamera yang memberi derajat rotasi gambar, Anda bisa menghitungnya dari derajat rotasi perangkat dan orientasi kamera sensor di perangkat:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Kemudian, teruskan objek media.Image
dan nilai derajat rotasi ke InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Menggunakan URI file
Untuk membuat objek InputImage
dari URI file, teruskan konteks aplikasi dan URI file ke
InputImage.fromFilePath()
. Hal ini berguna ketika Anda
gunakan intent ACTION_GET_CONTENT
untuk meminta pengguna memilih
gambar dari aplikasi galeri mereka.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Menggunakan ByteBuffer
atau ByteArray
Untuk membuat objek InputImage
dari ByteBuffer
atau ByteArray
, pertama-tama hitung derajat rotasi gambar seperti yang dijelaskan sebelumnya untuk input media.Image
.
Kemudian, buat objek InputImage
dengan buffer atau array, beserta tinggi, lebar, format encoding warna, dan derajat rotasi gambar:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Menggunakan Bitmap
Untuk membuat objek InputImage
dari objek Bitmap
, buat deklarasi berikut:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
Gambar direpresentasikan oleh objek Bitmap
bersama dengan derajat rotasi.
3. Menjalankan pemberi label gambar
Untuk memberi label pada objek dalam gambar, teruskan objekimage
ke metode ImageLabeler
Metode process()
.
Kotlin
labeler.process(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
labeler.process(image) .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() { @Override public void onSuccess(List<ImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. Mendapatkan informasi tentang objek berlabel
Jika operasi pemberian label pada gambar berhasil, daftar objek ImageLabel
akan diteruskan ke pemroses peristiwa sukses. Setiap objek ImageLabel
mewakili
sesuatu yang
diberi label dalam gambar. Anda dapat memperoleh
teks dari setiap label
deskripsi, skor keyakinan kecocokannya, dan indeks kecocokannya.
Contoh:
Kotlin
for (label in labels) { val text = label.text val confidence = label.confidence val index = label.index }
Java
for (ImageLabel label : labels) { String text = label.getText(); float confidence = label.getConfidence(); int index = label.getIndex(); }
Tips untuk meningkatkan performa real-time
Jika Anda ingin memberikan label pada gambar dalam aplikasi real-time, ikuti panduan ini untuk mencapai kecepatan frame terbaik:
- Jika Anda menggunakan
Camera
ataucamera2
API, batasi panggilan ke pemberi label gambar. Jika frame video baru tersedia saat pemberi label gambar sedang berjalan, hapus frame tersebut. LihatVisionProcessorBase
dalam aplikasi contoh panduan memulai sebagai contoh. - Jika Anda menggunakan API
CameraX
, pastikan strategi backpressure ditetapkan ke nilai defaultnyaImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
. Hal ini menjamin hanya satu gambar yang akan dikirim untuk dianalisis dalam satu waktu. Jika lebih banyak gambar yang dihasilkan ketika penganalisis sedang sibuk, mereka akan dikeluarkan secara otomatis dan tidak diantrekan pengiriman. Setelah gambar yang sedang dianalisis ditutup dengan memanggil ImageProxy.close(), gambar terbaru berikutnya akan dikirim. - Jika Anda menggunakan output pemberi label pada gambar untuk menempatkan grafis pada gambar input, pertama-tama dapatkan hasilnya dari ML Kit, lalu render gambar dan tempatkan grafis dalam satu langkah. Tindakan ini merender ke permukaan tampilan
hanya sekali untuk setiap {i>input frame<i}. Lihat
CameraSourcePreview
danGraphicOverlay
dalam aplikasi contoh panduan memulai sebagai contoh. - Jika Anda menggunakan Camera2 API, ambil gambar dalam format
ImageFormat.YUV_420_888
. Jika Anda menggunakan Camera API versi lama, ambil gambar dalam formatImageFormat.NV21
.