Memberikan label pada gambar dengan model yang dilatih AutoML di Android

Setelah melatih model Anda sendiri menggunakan AutoML Vision Edge, Anda dapat menggunakannya dalam aplikasi untuk memberi label pada gambar. Ada dua cara untuk mengintegrasikan model yang dilatih dari AutoML Vision Edge: Anda dapat memaketkan model dengan memasukkannya ke dalam folder aset aplikasi, atau mendownloadnya secara dinamis dari Firebase.
Opsi pemaketan model
Dipaketkan dalam aplikasi Anda
  • Model merupakan bagian dari APK aplikasi Anda
  • Model akan langsung tersedia, bahkan saat perangkat Android sedang offline
  • Tidak memerlukan project Firebase
Dihosting dengan Firebase
  • Hosting model dengan menguploadnya ke Firebase Machine Learning
  • Mengurangi ukuran APK
  • Model didownload sesuai permintaan
  • Update model dapat dikirim tanpa memublikasikan ulang aplikasi
  • Pengujian A/B yang mudah dengan Firebase Remote Config
  • Memerlukan project Firebase

Cobalah

Sebelum memulai

1. Dalam file build.gradle level project, pastikan Anda memasukkan repositori Maven Google di bagian buildscript dan allprojects.

2. Tambahkan dependensi untuk library Android ML Kit ke file gradle level aplikasi modul Anda, biasanya app/build.gradle: Untuk memaketkan model dengan aplikasi Anda:
    dependencies {
      // ...
      // Image labeling feature with bundled automl model
      implementation 'com.google.mlkit:image-labeling-automl:16.2.1'
    }
    
Untuk mendownload model dari Firebase secara dinamis, tambahkan dependensi linkFirebase:
    dependencies {
      // ...
      // Image labeling feature with automl model downloaded
      // from firebase
      implementation 'com.google.mlkit:image-labeling-automl:16.2.1'
      implementation 'com.google.mlkit:linkfirebase:16.0.1'
    }
    
3. Jika ingin mendownload model, pastikan Anda menambahkan Firebase ke project Android, jika belum melakukannya. Langkah ini tidak diperlukan jika Anda memaketkan model.

1. Memuat model

Mengonfigurasi sumber model lokal

Untuk memaketkan model dengan aplikasi Anda:

1. Ekstrak model dan metadatanya dari arsip zip yang Anda download dari Firebase console. Sebaiknya gunakan file hasil download apa adanya, tanpa melakukan perubahan (termasuk nama file).

2. Sertakan model Anda dan file metadatanya dalam paket aplikasi Anda:

a. Jika belum memiliki folder aset dalam project, Anda dapat membuatnya dengan mengklik kanan folder app/, lalu mengklik Baru > Folder > Folder Aset.

b. Buat subfolder di folder aset untuk menyimpan file model.

c. Salin file model.tflite, dict.txt, dan manifest.json ke sub-folder (ketiga file harus berada di folder yang sama).

3. Tambahkan hal berikut ke file build.gradle aplikasi Anda untuk memastikan Gradle tidak mengompresi file model saat mem-build aplikasi:
    android {
        // ...
        aaptOptions {
            noCompress "tflite"
        }
    }
    
File model akan disertakan di dalam paket aplikasi dan tersedia untuk ML Kit sebagai aset mentah.

Catatan: mulai dari plugin Android Gradle versi 4.1, .tflite akan ditambahkan ke daftar noCompress secara default dan baris di atas tidak diperlukan lagi.

4. Buat objek LocalModel dengan menentukan jalur ke file manifes model:

Kotlin

val localModel = AutoMLImageLabelerLocalModel.Builder()
        .setAssetFilePath("manifest.json")
        // or .setAbsoluteFilePath(absolute file path to manifest file)
        .build()

Java

AutoMLImageLabelerLocalModel localModel =
    new AutoMLImageLabelerLocalModel.Builder()
        .setAssetFilePath("manifest.json")
        // or .setAbsoluteFilePath(absolute file path to manifest file)
        .build();

Mengonfigurasi sumber model yang dihosting Firebase

Untuk menggunakan model yang dihosting dari jarak jauh, buat objek RemoteModel, dengan menentukan nama yang ditetapkan pada model saat memublikasikannya:

Kotlin

// Specify the name you assigned in the Firebase console.
val remoteModel =
    AutoMLImageLabelerRemoteModel.Builder("your_model_name").build()

Java

// Specify the name you assigned in the Firebase console.
AutoMLImageLabelerRemoteModel remoteModel =
    new AutoMLImageLabelerRemoteModel.Builder("your_model_name").build();

Kemudian, mulai tugas download model dengan menentukan kondisi yang Anda inginkan untuk mengizinkan download. Jika model tidak ada di perangkat, atau jika versi model yang lebih baru tersedia, tugas ini akan mendownload model dari Firebase secara asinkron:

Kotlin

val downloadConditions = DownloadConditions.Builder()
    .requireWifi()
    .build()
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
    .addOnSuccessListener {
        // Success.
    }

Java

DownloadConditions downloadConditions = new DownloadConditions.Builder()
        .requireWifi()
        .build();
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
        .addOnSuccessListener(new OnSuccessListener() {
            @Override
            public void onSuccess(@NonNull Task task) {
                // Success.
            }
        });

Banyak aplikasi memulai tugas download dalam kode inisialisasinya, tetapi Anda dapat melakukannya kapan saja sebelum menggunakan model.

Membuat pemberi label gambar dari model Anda

Setelah sumber model dikonfigurasi, buat objek ImageLabeler dari salah satu sumber model tersebut.

Jika Anda hanya memiliki model yang dipaketkan secara lokal, cukup buat pemberi label dari objek AutoMLImageLabelerLocalModel dan konfigurasikan nilai minimum skor keyakinan yang ingin Anda wajibkan (lihat Mengevaluasi model):

Kotlin

val autoMLImageLabelerOptions = AutoMLImageLabelerOptions.Builder(localModel)
    .setConfidenceThreshold(0)  // Evaluate your model in the Firebase console
                                // to determine an appropriate value.
    .build()
val labeler = ImageLabeling.getClient(autoMLImageLabelerOptions)

Java

AutoMLImageLabelerOptions autoMLImageLabelerOptions =
        new AutoMLImageLabelerOptions.Builder(localModel)
                .setConfidenceThreshold(0.0f)  // Evaluate your model in the Firebase console
                                               // to determine an appropriate value.
                .build();
ImageLabeler labeler = ImageLabeling.getClient(autoMLImageLabelerOptions)

Jika Anda memiliki model yang dihosting dari jarak jauh, Anda harus memeriksa apakah model tersebut sudah didownload sebelum menjalankannya. Anda dapat memeriksa status tugas download model menggunakan metode isModelDownloaded() pengelola model.

Meskipun Anda hanya perlu mengonfirmasi ini sebelum menjalankan pelabel, jika Anda memiliki model yang dihosting dari jarak jauh dan model yang dibundel secara lokal, sebaiknya lakukan pemeriksaan ini saat membuat instance pelabel gambar: buat pelabel dari model jarak jauh jika telah didownload, dan dari model lokal jika belum didownload.

Kotlin

RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
    .addOnSuccessListener { isDownloaded -> 
    val optionsBuilder =
        if (isDownloaded) {
            AutoMLImageLabelerOptions.Builder(remoteModel)
        } else {
            AutoMLImageLabelerOptions.Builder(localModel)
        }
    // Evaluate your model in the Firebase console to determine an appropriate threshold.
    val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
    val labeler = ImageLabeling.getClient(options)
}

Java

RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
        .addOnSuccessListener(new OnSuccessListener() {
            @Override
            public void onSuccess(Boolean isDownloaded) {
                AutoMLImageLabelerOptions.Builder optionsBuilder;
                if (isDownloaded) {
                    optionsBuilder = new AutoMLImageLabelerOptions.Builder(remoteModel);
                } else {
                    optionsBuilder = new AutoMLImageLabelerOptions.Builder(localModel);
                }
                AutoMLImageLabelerOptions options = optionsBuilder
                        .setConfidenceThreshold(0.0f)  // Evaluate your model in the Firebase console
                                                       // to determine an appropriate threshold.
                        .build();

                ImageLabeler labeler = ImageLabeling.getClient(options);
            }
        });

Jika Anda hanya memiliki model yang dihosting dari jarak jauh, Anda harus menonaktifkan fungsionalitas terkait model—misalnya, menyamarkan atau menyembunyikan sebagian UI—hingga Anda mengonfirmasi model tersebut telah didownload. Anda dapat melakukannya dengan menambahkan pemroses ke metode download() pengelola model:

Kotlin

RemoteModelManager.getInstance().download(remoteModel, conditions)
    .addOnSuccessListener {
        // Download complete. Depending on your app, you could enable the ML
        // feature, or switch from the local model to the remote model, etc.
    }

Java

RemoteModelManager.getInstance().download(remoteModel, conditions)
        .addOnSuccessListener(new OnSuccessListener() {
            @Override
            public void onSuccess(Void v) {
              // Download complete. Depending on your app, you could enable
              // the ML feature, or switch from the local model to the remote
              // model, etc.
            }
        });

2. Menyiapkan gambar input

Selanjutnya, untuk setiap gambar yang ingin Anda beri label, buat objek InputImage dari gambar Anda. Pemberi label gambar berfungsi secara optimal jika Anda menggunakan Bitmap atau, jika Anda menggunakan Camera2 API, media.Image YUV_420_888, yang direkomendasikan jika memungkinkan.

Anda dapat membuat objek InputImage dari berbagai sumber, yang masing-masing langkahnya dijelaskan di bawah.

Menggunakan media.Image

Untuk membuat objek InputImage dari objek media.Image, seperti saat Anda mengambil gambar dari kamera perangkat, teruskan objek media.Image dan rotasi gambar ke InputImage.fromMediaImage().

Jika Anda menggunakan library CameraX, class OnImageCapturedListener dan ImageAnalysis.Analyzer akan menghitung nilai rotasi untuk Anda.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Jika Anda tidak menggunakan library kamera yang memberi derajat rotasi gambar, Anda dapat menghitungnya dari derajat rotasi perangkat dan orientasi sensor kamera pada perangkat:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Kemudian, teruskan objek media.Image dan nilai derajat rotasi ke InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Menggunakan URI file

Untuk membuat objek InputImage dari URI file, teruskan konteks aplikasi dan URI file ke InputImage.fromFilePath(). Hal ini berguna saat Anda menggunakan intent ACTION_GET_CONTENT untuk meminta pengguna memilih gambar dari aplikasi galeri mereka.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Menggunakan ByteBuffer atau ByteArray

Untuk membuat objek InputImage dari ByteBuffer atau ByteArray, pertama-tama hitung derajat rotasi gambar seperti yang dijelaskan sebelumnya untuk input media.Image. Kemudian, buat objek InputImage dengan buffer atau array, beserta tinggi, lebar, format encoding warna, dan derajat rotasi gambar:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Menggunakan Bitmap

Untuk membuat objek InputImage dari objek Bitmap, buat deklarasi berikut:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Gambar direpresentasikan oleh objek Bitmap bersama dengan derajat rotasi.

3. Menjalankan pemberi label gambar

Untuk memberi label pada objek dalam gambar, teruskan objek image ke metode process() ImageLabeler.

Kotlin

labeler.process(image)
        .addOnSuccessListener { labels ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

labeler.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
            @Override
            public void onSuccess(List<ImageLabel> labels) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

4. Mendapatkan informasi tentang objek berlabel

Jika operasi pemberian label pada gambar berhasil, daftar objek ImageLabel akan diteruskan ke pemroses peristiwa sukses. Setiap objek ImageLabel mewakili sesuatu yang diberi label dalam gambar. Anda dapat memperoleh deskripsi teks dari setiap label, skor keyakinan kecocokannya, dan indeks kecocokannya. Contoh:

Kotlin

for (label in labels) {
    val text = label.text
    val confidence = label.confidence
    val index = label.index
}

Java

for (ImageLabel label : labels) {
    String text = label.getText();
    float confidence = label.getConfidence();
    int index = label.getIndex();
}

Tips untuk meningkatkan performa real-time

Jika Anda ingin memberikan label pada gambar dalam aplikasi real-time, ikuti panduan ini untuk mencapai kecepatan frame terbaik:

  • Jika Anda menggunakan API Camera atau camera2, batasi panggilan ke pemberi label gambar. Jika frame video baru tersedia saat pemberi label gambar sedang berjalan, hapus frame tersebut. Lihat class VisionProcessorBase di aplikasi contoh panduan memulai untuk mengetahui contohnya.
  • Jika Anda menggunakan API CameraX, pastikan strategi tekanan balik disetel ke nilai defaultnya ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. Hal ini menjamin hanya satu gambar yang akan dikirimkan untuk dianalisis dalam satu waktu. Jika lebih banyak gambar dihasilkan saat penganalisis sibuk, gambar tersebut akan otomatis dihentikan dan tidak dimasukkan dalam antrean untuk pengiriman. Setelah gambar yang dianalisis ditutup dengan memanggil ImageProxy.close(), gambar terbaru berikutnya akan dikirimkan.
  • Jika Anda menggunakan output pemberi label pada gambar untuk menempatkan grafis pada gambar input, pertama-tama dapatkan hasilnya dari ML Kit, lalu render gambar dan tempatkan grafis dalam satu langkah. Dengan demikian, Anda hanya merender ke permukaan tampilan sekali untuk setiap frame input. Lihat class CameraSourcePreview dan GraphicOverlay dalam aplikasi contoh panduan memulai untuk mengetahui contohnya.
  • Jika Anda menggunakan Camera2 API, ambil gambar dalam format ImageFormat.YUV_420_888. Jika Anda menggunakan Camera API versi lama, ambil gambar dalam format ImageFormat.NV21.