Ajouter des libellés à des images avec un modèle entraîné automatiquement sur iOS
Une fois que vous avez entraîné votre propre modèle à l'aide d'AutoML Vision Edge, vous pouvez l'utiliser dans votre application pour ajouter des libellés aux images.
Il existe deux façons d'intégrer des modèles entraînés à partir d'AutoML Vision Edge. Vous pouvez empaqueter le modèle en copiant ses fichiers dans votre projet Xcode ou en le téléchargeant de manière dynamique depuis Firebase.
Options de regroupement de modèles | |
---|---|
Groupé dans votre application |
|
Hébergement avec Firebase |
|
Essayer
- Testez l'application exemple pour voir un exemple d'utilisation de cette API.
Avant de commencer
1. Incluez les bibliothèques ML Kit dans votre fichier Podfile:Pour regrouper un modèle avec votre application:
pod 'GoogleMLKit/ImageLabelingAutoML'
LinkFirebase
:
pod 'GoogleMLKit/ImageLabelingAutoML' pod 'GoogleMLKit/LinkFirebase'
.xcworkspace
code>. ML Kit est compatible avec la version 13.2.1 ou ultérieure de Xcode.
3. Si vous souhaitez télécharger un modèle, assurez-vous d'ajouter Firebase à votre projet iOS, si ce n'est pas déjà fait. Cette étape n'est pas obligatoire lorsque vous groupez le modèle.
1. Charger le modèle
Configurer une source de modèle locale
Pour regrouper le modèle avec votre application:1. Extrayez le modèle et ses métadonnées de l'archive ZIP que vous avez téléchargée depuis la console Firebase dans un dossier:
your_model_directory |____dict.txt |____manifest.json |____model.tflite
2. Copiez le dossier dans votre projet Xcode, en veillant à sélectionner Create folder references (Créer des références de dossier) lorsque vous le faites. Le fichier de modèle et les métadonnées seront inclus dans l'app bundle et disponibles pour ML Kit.
3. Créez un objet
AutoMLImageLabelerLocalModel
en spécifiant le chemin d'accès au fichier manifeste du modèle:
guard let manifestPath = Bundle.main.path( forResource: "manifest", ofType: "json", inDirectory: "your_model_directory" ) else { return } let localModel = AutoMLImageLabelerLocalModel(manifestPath: manifestPath)
NSString *manifestPath = [NSBundle.mainBundle pathForResource:@"manifest" ofType:@"json" inDirectory:@"your_model_directory"]; MLKAutoMLImageLabelerLocalModel *localModel = [[MLKAutoMLImageLabelerLocalModel alloc] initWithManifestPath:manifestPath];
Configurer une source de modèle hébergée par Firebase
Pour utiliser le modèle hébergé à distance, créez un objet AutoMLImageLabelerRemoteModel
, en spécifiant le nom que vous avez attribué au modèle lorsque vous l'avez publié:
let remoteModel = AutoMLImageLabelerRemoteModel( name: "your_remote_model" // The name you assigned in // the Firebase console. )
MLKAutoMLImageLabelerRemoteModel *remoteModel = [[MLKAutoMLImageLabelerRemoteModel alloc] initWithName:@"your_remote_model"]; // The name you assigned in // the Firebase console.
Ensuite, lancez la tâche de téléchargement du modèle, en spécifiant les conditions sous lesquelles vous souhaitez autoriser le téléchargement. Si le modèle n'est pas sur l'appareil ou si une version plus récente du modèle est disponible, la tâche télécharge le modèle de manière asynchrone depuis Firebase:
let downloadConditions = ModelDownloadConditions( allowsCellularAccess: true, allowsBackgroundDownloading: true ) let downloadProgress = ModelManager.modelManager().download( remoteModel, conditions: downloadConditions )
MLKModelDownloadConditions *downloadConditions = [[MLKModelDownloadConditions alloc] initWithAllowsCellularAccess:YES allowsBackgroundDownloading:YES]; NSProgress *downloadProgress = [[MLKModelManager modelManager] downloadModel:remoteModel conditions:downloadConditions];
De nombreuses applications démarrent la tâche de téléchargement dans leur code d'initialisation, mais vous pouvez le faire à tout moment avant d'avoir besoin d'utiliser le modèle.
Créer un outil de libellé d'image à partir de votre modèle
Après avoir configuré vos sources de modèle, créez un objet ImageLabeler
à partir de l'une d'elles.
Si vous ne disposez que d'un modèle groupé localement, créez simplement un outil de libellé à partir de votre objet AutoMLImageLabelerLocalModel
et configurez le seuil de score de confiance que vous souhaitez exiger (voir Évaluer votre mode:
let options = AutoMLImageLabelerOptions(localModel: localModel) options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Firebase console // to determine an appropriate value. let imageLabeler = ImageLabeler.imageLabeler(options: options)
MLKAutoMLImageLabelerOptions *options = [[MLKAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel]; options.confidenceThreshold = @(0.0); // Evaluate your model in the Firebase console // to determine an appropriate value. MLKImageLabeler *imageLabeler = [MLKImageLabeler imageLabelerWithOptions:options];
Si vous disposez d'un modèle hébergé à distance, vous devez vérifier qu'il a été téléchargé avant de l'exécuter. Vous pouvez vérifier l'état de la tâche de téléchargement du modèle à l'aide de la méthode isModelDownloaded
(remoteModel:) du gestionnaire de modèles.
Bien que vous n'ayez besoin de le confirmer qu'avant d'exécuter l'outil de libellé, si vous disposez à la fois d'un modèle hébergé à distance et d'un modèle groupé localement, il peut être judicieux d'effectuer cette vérification lors de l'instanciation de ImageLabeler
: créez un outil de libellé à partir du modèle distant s'il a été téléchargé, et à partir du modèle local dans le cas contraire.
var options: AutoMLImageLabelerOptions! if (ModelManager.modelManager().isModelDownloaded(remoteModel)) { options = AutoMLImageLabelerOptions(remoteModel: remoteModel) } else { options = AutoMLImageLabelerOptions(localModel: localModel) } options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Firebase console // to determine an appropriate value. let imageLabeler = ImageLabeler.imageLabeler(options: options)
MLKAutoMLImageLabelerOptions *options; if ([[MLKModelManager modelManager] isModelDownloaded:remoteModel]) { options = [[MLKAutoMLImageLabelerOptions alloc] initWithRemoteModel:remoteModel]; } else { options = [[MLKAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel]; } options.confidenceThreshold = @(0.0); // Evaluate your model in the Firebase console // to determine an appropriate value. MLKImageLabeler *imageLabeler = [MLKImageLabeler imageLabelerWithOptions:options];
Si vous ne disposez que d'un modèle hébergé à distance, vous devez désactiver les fonctionnalités liées au modèle (par exemple, griser ou masquer une partie de votre UI) jusqu'à ce que vous confirmiez que le modèle a été téléchargé.
Vous pouvez obtenir l'état du téléchargement du modèle en associant des observateurs au centre de notifications par défaut. Veillez à utiliser une référence faible à self
dans le bloc d'observateur, car les téléchargements peuvent prendre un certain temps et l'objet d'origine peut être libéré au moment où le téléchargement se termine. Exemple :
NotificationCenter.default.addObserver( forName: .mlkitModelDownloadDidSucceed, object: nil, queue: nil ) { [weak self] notification in guard let strongSelf = self, let userInfo = notification.userInfo, let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue] as? RemoteModel, model.name == "your_remote_model" else { return } // The model was downloaded and is available on the device } NotificationCenter.default.addObserver( forName: .mlkitModelDownloadDidFail, object: nil, queue: nil ) { [weak self] notification in guard let strongSelf = self, let userInfo = notification.userInfo, let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue] as? RemoteModel else { return } let error = userInfo[ModelDownloadUserInfoKey.error.rawValue] // ... }
__weak typeof(self) weakSelf = self; [NSNotificationCenter.defaultCenter addObserverForName:MLKModelDownloadDidSucceedNotification object:nil queue:nil usingBlock:^(NSNotification *_Nonnull note) { if (weakSelf == nil | note.userInfo == nil) { return; } __strong typeof(self) strongSelf = weakSelf; MLKRemoteModel *model = note.userInfo[MLKModelDownloadUserInfoKeyRemoteModel]; if ([model.name isEqualToString:@"your_remote_model"]) { // The model was downloaded and is available on the device } }]; [NSNotificationCenter.defaultCenter addObserverForName:MLKModelDownloadDidFailNotification object:nil queue:nil usingBlock:^(NSNotification *_Nonnull note) { if (weakSelf == nil | note.userInfo == nil) { return; } __strong typeof(self) strongSelf = weakSelf; NSError *error = note.userInfo[MLKModelDownloadUserInfoKeyError]; }];
2. Préparer l'image d'entrée
Créez un objet VisionImage
à l'aide d'un UIImage
ou d'un CMSampleBuffer
.
Si vous utilisez un UIImage
, procédez comme suit:
- Créez un objet
VisionImage
avecUIImage
. Veillez à spécifier le.orientation
approprié.let image = VisionImage(image: UIImage) visionImage.orientation = image.imageOrientation
MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image]; visionImage.orientation = image.imageOrientation;
Si vous utilisez un CMSampleBuffer
, procédez comme suit:
-
Spécifiez l'orientation des données d'image contenues dans
CMSampleBuffer
.Pour obtenir l'orientation de l'image:
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> UIImage.Orientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftMirrored : .right case .landscapeLeft: return cameraPosition == .front ? .downMirrored : .up case .portraitUpsideDown: return cameraPosition == .front ? .rightMirrored : .left case .landscapeRight: return cameraPosition == .front ? .upMirrored : .down case .faceDown, .faceUp, .unknown: return .up } }
- (UIImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored : UIImageOrientationRight; case UIDeviceOrientationLandscapeLeft: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored : UIImageOrientationUp; case UIDeviceOrientationPortraitUpsideDown: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored : UIImageOrientationLeft; case UIDeviceOrientationLandscapeRight: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored : UIImageOrientationDown; case UIDeviceOrientationUnknown: case UIDeviceOrientationFaceUp: case UIDeviceOrientationFaceDown: return UIImageOrientationUp; } }
- Créez un objet
VisionImage
à l'aide de l'objetCMSampleBuffer
et de l'orientation:let image = VisionImage(buffer: sampleBuffer) image.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition)
MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer]; image.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
3. Exécuter l'outil de libellé d'image
De manière asynchrone:
imageLabeler.process(image) { labels, error in guard error == nil, let labels = labels, !labels.isEmpty else { // Handle the error. return } // Show results. }
[imageLabeler processImage:image completion:^(NSArray*_Nullable labels, NSError *_Nullable error) { if (labels.count == 0) { // Handle the error. return; } // Show results. }];
De manière synchrone:
var labels: [ImageLabel] do { labels = try imageLabeler.results(in: image) } catch let error { // Handle the error. return } // Show results.
NSError *error; NSArray*labels = [imageLabeler resultsInImage:image error:&error]; // Show results or handle the error.
4. Obtenir des informations sur les objets libellés
Si l'opération de libellé d'image aboutit, elle renvoie un tableau deImageLabel
. Chaque ImageLabel
représente un élément qui a été libellé dans l'image. Vous pouvez obtenir la description textuelle de chaque étiquette (si elle est disponible dans les métadonnées du fichier de modèle TensorFlow Lite), le score de confiance et l'indice.
Exemple :
for label in labels { let labelText = label.text let confidence = label.confidence let index = label.index }
for (MLKImageLabel *label in labels) { NSString *labelText = label.text; float confidence = label.confidence; NSInteger index = label.index; }
Conseils pour améliorer les performances en temps réel
Si vous souhaitez ajouter des libellés aux images dans une application en temps réel, suivez ces consignes pour obtenir les meilleurs fréquences d'images:
- Pour traiter les images vidéo, utilisez l'API synchrone
results(in:)
du détecteur. Appelez cette méthode à partir de la fonctioncaptureOutput(_, didOutput:from:)
deAVCaptureVideoDataOutputSampleBufferDelegate
pour obtenir de manière synchrone les résultats du frame vidéo donné. LaissezalwaysDiscardsLateVideoFrames
deAVCaptureVideoDataOutput
commetrue
pour limiter les appels au détecteur. Si un nouveau frame vidéo devient disponible pendant l'exécution du détecteur, il sera supprimé. - Si vous utilisez la sortie du détecteur pour superposer des éléments graphiques à l'image d'entrée, obtenez d'abord le résultat de ML Kit, puis affichez l'image et la superposition en une seule étape. Vous ne procédez ainsi qu'une seule fois pour chaque frame d'entrée traitée. Pour obtenir un exemple, consultez updatePreviewOverlayViewWithLastFrame dans l'exemple de démarrage rapide ML Kit.