iOS पर, AutoML की मदद से ट्रेन किए गए मॉडल की मदद से इमेज को लेबल करें
AutoML Vision Edge इस्तेमाल करके, अपने मॉडल को ट्रेनिंग देने के बाद, तो अपने ऐप्लिकेशन में इसका इस्तेमाल इमेज को लेबल करने के लिए किया जा सकता है.
AutoML Vision Edge से ट्रेन किए गए मॉडल को इंटिग्रेट करने के दो तरीके हैं. आप अपने Xcode प्रोजेक्ट में मॉडल की फ़ाइलों की कॉपी बनाकर, मॉडल को बंडल करें या इसे Firebase से डाइनैमिक तौर पर डाउनलोड कर सकता है.
मॉडल बंडलिंग के विकल्प | |
---|---|
आपके ऐप्लिकेशन में शामिल |
|
Firebase के साथ होस्ट किया गया |
|
इसे आज़माएं
- सैंपल वाले ऐप्लिकेशन को इस्तेमाल करके देखें, इस एपीआई के इस्तेमाल का एक उदाहरण देखें.
शुरू करने से पहले
1. अपनी Podfile में ML Kit लाइब्रेरी शामिल करें:अपने ऐप्लिकेशन के साथ किसी मॉडल को बंडल करने के लिए:
pod 'GoogleMLKit/ImageLabelingAutoML'Firebase से मॉडल को डाइनैमिक तौर पर डाउनलोड करने के लिए,
LinkFirebase
जोड़ें
निर्भरता:
pod 'GoogleMLKit/ImageLabelingAutoML' pod 'GoogleMLKit/LinkFirebase'2. अपने प्रोजेक्ट के Pods को इंस्टॉल या अपडेट करने के बाद, अपना Xcode प्रोजेक्ट खोलें इसके
.xcworkspace
कोड> का इस्तेमाल करके. ML Kit, Xcode में काम करता है
13.2.1 या इसके बाद के वर्शन.
3. अगर आपको कोई मॉडल डाउनलोड करना है, तो पक्का करें कि
अपने iOS प्रोजेक्ट में Firebase जोड़ें,
अगर आपने पहले से ऐसा नहीं किया है. जब आप बंडल को बंडल करते हैं, तो इसकी ज़रूरत नहीं होती है
मॉडल.
1. मॉडल लोड करें
लोकल मॉडल सोर्स कॉन्फ़िगर करना
मॉडल को अपने ऐप्लिकेशन के साथ बंडल करने के लिए:1. डाउनलोड किए गए ZIP फ़ॉर्मैट वाले संग्रह से मॉडल और उसका मेटाडेटा निकालें Firebase कंसोल से किसी फ़ोल्डर में भेजने के लिए:
your_model_directory |____dict.txt |____manifest.json |____model.tfliteअभी तक किसी भी व्यक्ति ने चेक इन नहीं किया है तीनों फ़ाइलें एक ही फ़ोल्डर में होनी चाहिए. हमारा सुझाव है कि आप इन फ़ाइलों का इस्तेमाल करें क्योंकि आपने उन्हें बिना किसी बदलाव के डाउनलोड किया (इनमें फ़ाइल के नाम भी शामिल हैं).
2. फ़ोल्डर को अपने Xcode प्रोजेक्ट में कॉपी करें. ऐसा करते समय, ऐसा करने पर, फ़ोल्डर के रेफ़रंस बनाएं. मॉडल फ़ाइल और मेटाडेटा ऐप्लिकेशन बंडल में शामिल किया जाएगा और ML किट में उपलब्ध होगा.
3. इसका पाथ तय करते हुए,
AutoMLImageLabelerLocalModel
ऑब्जेक्ट बनाएं
मॉडल मेनिफ़ेस्ट फ़ाइल:
Swift
guard let manifestPath = Bundle.main.path( forResource: "manifest", ofType: "json", inDirectory: "your_model_directory" ) else { return } let localModel = AutoMLImageLabelerLocalModel(manifestPath: manifestPath)
Objective-C
NSString *manifestPath = [NSBundle.mainBundle pathForResource:@"manifest" ofType:@"json" inDirectory:@"your_model_directory"]; MLKAutoMLImageLabelerLocalModel *localModel = [[MLKAutoMLImageLabelerLocalModel alloc] initWithManifestPath:manifestPath];
Firebase से होस्ट किए गए मॉडल सोर्स को कॉन्फ़िगर करना
रिमोट तरीके से होस्ट किए गए मॉडल का इस्तेमाल करने के लिए, AutoMLImageLabelerRemoteModel
बनाएं
ऑब्जेक्ट है, जो उस नाम को दर्ज करता है जिसे आपने मॉडल को प्रकाशित करते समय असाइन किया था:
Swift
let remoteModel = AutoMLImageLabelerRemoteModel( name: "your_remote_model" // The name you assigned in // the Firebase console. )
Objective-C
MLKAutoMLImageLabelerRemoteModel *remoteModel = [[MLKAutoMLImageLabelerRemoteModel alloc] initWithName:@"your_remote_model"]; // The name you assigned in // the Firebase console.
इसके बाद, उन शर्तों को तय करते हुए मॉडल डाउनलोड टास्क शुरू करें को डाउनलोड करने की अनुमति देनी है. अगर मॉडल डिवाइस पर नहीं है या नया डिवाइस है, तो मॉडल का वर्शन उपलब्ध है, तो टास्क एसिंक्रोनस रूप से Firebase से मिला मॉडल:
Swift
let downloadConditions = ModelDownloadConditions( allowsCellularAccess: true, allowsBackgroundDownloading: true ) let downloadProgress = ModelManager.modelManager().download( remoteModel, conditions: downloadConditions )
Objective-C
MLKModelDownloadConditions *downloadConditions = [[MLKModelDownloadConditions alloc] initWithAllowsCellularAccess:YES allowsBackgroundDownloading:YES]; NSProgress *downloadProgress = [[MLKModelManager modelManager] downloadModel:remoteModel conditions:downloadConditions];
कई ऐप्लिकेशन अपने इनिशलाइज़ेशन कोड में डाउनलोड का काम शुरू करते हैं, लेकिन आपके द्वारा मॉडल का उपयोग करने की आवश्यकता से पहले किसी भी समय ऐसा कर सकते है.
अपने मॉडल से इमेज लेबलर बनाना
अपने मॉडल सोर्स को कॉन्फ़िगर करने के बाद, किसी एक से ImageLabeler
ऑब्जेक्ट बनाएं
विकल्प मिलते हैं.
अगर आपके पास केवल स्थानीय रूप से बंडल किया गया मॉडल है, तो बस अपने
AutoMLImageLabelerLocalModel
ऑब्जेक्ट और कॉन्फ़िडेंस स्कोर को कॉन्फ़िगर करें
थ्रेशोल्ड को पूरा करें (अपने मोड का आकलन करें देखें:
Swift
let options = AutoMLImageLabelerOptions(localModel: localModel) options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Firebase console // to determine an appropriate value. let imageLabeler = ImageLabeler.imageLabeler(options: options)
Objective-C
MLKAutoMLImageLabelerOptions *options = [[MLKAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel]; options.confidenceThreshold = @(0.0); // Evaluate your model in the Firebase console // to determine an appropriate value. MLKImageLabeler *imageLabeler = [MLKImageLabeler imageLabelerWithOptions:options];
अगर आपके पास रिमोट तौर पर होस्ट किया गया मॉडल है, तो आपको यह देखना होगा कि
डाउनलोड करने की सुविधा देता है. मॉडल के डाउनलोड होने की स्थिति देखी जा सकती है
टास्क को, मॉडल मैनेजर की isModelDownloaded
(remoteModel:) तरीके से करके बनाया गया है.
हालांकि, लेबलर को चलाने से पहले आपको इसकी पुष्टि करनी होगी, अगर
रिमोट तौर पर होस्ट किया गया मॉडल और लोकल-बंडल्ड मॉडल, दोनों होने चाहिए, तो इससे
ImageLabeler
को इंस्टैंशिएट करते समय यह जांच करना सही रहेगा: इसकी मदद से
अगर रिमोट मॉडल की मदद से लेबलर को डाउनलोड किया गया है और स्थानीय मॉडल से उसे डाउनलोड किया गया है, तो
नहीं तो.
Swift
var options: AutoMLImageLabelerOptions! if (ModelManager.modelManager().isModelDownloaded(remoteModel)) { options = AutoMLImageLabelerOptions(remoteModel: remoteModel) } else { options = AutoMLImageLabelerOptions(localModel: localModel) } options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Firebase console // to determine an appropriate value. let imageLabeler = ImageLabeler.imageLabeler(options: options)
Objective-C
MLKAutoMLImageLabelerOptions *options; if ([[MLKModelManager modelManager] isModelDownloaded:remoteModel]) { options = [[MLKAutoMLImageLabelerOptions alloc] initWithRemoteModel:remoteModel]; } else { options = [[MLKAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel]; } options.confidenceThreshold = @(0.0); // Evaluate your model in the Firebase console // to determine an appropriate value. MLKImageLabeler *imageLabeler = [MLKImageLabeler imageLabelerWithOptions:options];
अगर आपके पास सिर्फ़ रिमोट तौर पर होस्ट किया गया मॉडल है, तो आपको मॉडल से जुड़ी सेटिंग बंद करनी चाहिए सुविधा—उदाहरण के लिए, आपके यूज़र इंटरफ़ेस (यूआई) के किसी हिस्से को धूसर करना या छिपाना—जब तक तो यह पुष्टि की जाती है कि मॉडल डाउनलोड किया गया है.
ऑब्ज़र्वर को डिफ़ॉल्ट में अटैच करके मॉडल डाउनलोड स्थिति का पता लगाया जा सकता है
सूचना केंद्र. पक्का करें कि ऑब्ज़र्वर में, self
के लिए कमज़ोर रेफ़रंस का इस्तेमाल किया गया हो
ब्लॉक है, क्योंकि डाउनलोड होने में कुछ समय लग सकता है और मूल ऑब्जेक्ट
डाउनलोड पूरा होने पर खाली हो जाएगा. उदाहरण के लिए:
Swift
NotificationCenter.default.addObserver( forName: .mlkitModelDownloadDidSucceed, object: nil, queue: nil ) { [weak self] notification in guard let strongSelf = self, let userInfo = notification.userInfo, let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue] as? RemoteModel, model.name == "your_remote_model" else { return } // The model was downloaded and is available on the device } NotificationCenter.default.addObserver( forName: .mlkitModelDownloadDidFail, object: nil, queue: nil ) { [weak self] notification in guard let strongSelf = self, let userInfo = notification.userInfo, let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue] as? RemoteModel else { return } let error = userInfo[ModelDownloadUserInfoKey.error.rawValue] // ... }
Objective-C
__weak typeof(self) weakSelf = self; [NSNotificationCenter.defaultCenter addObserverForName:MLKModelDownloadDidSucceedNotification object:nil queue:nil usingBlock:^(NSNotification *_Nonnull note) { if (weakSelf == nil | note.userInfo == nil) { return; } __strong typeof(self) strongSelf = weakSelf; MLKRemoteModel *model = note.userInfo[MLKModelDownloadUserInfoKeyRemoteModel]; if ([model.name isEqualToString:@"your_remote_model"]) { // The model was downloaded and is available on the device } }]; [NSNotificationCenter.defaultCenter addObserverForName:MLKModelDownloadDidFailNotification object:nil queue:nil usingBlock:^(NSNotification *_Nonnull note) { if (weakSelf == nil | note.userInfo == nil) { return; } __strong typeof(self) strongSelf = weakSelf; NSError *error = note.userInfo[MLKModelDownloadUserInfoKeyError]; }];
2. इनपुट इमेज तैयार करें
एक VisionImage
ऑब्जेक्ट को UIImage
या
CMSampleBuffer
.
अगर UIImage
का इस्तेमाल किया जाता है, तो यह तरीका अपनाएं:
UIImage
के साथ एकVisionImage
ऑब्जेक्ट बनाएं. पक्का करें कि आपने सही.orientation
तय किया हो.Swift
let image = VisionImage(image: UIImage) visionImage.orientation = image.imageOrientation
Objective-C
MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image]; visionImage.orientation = image.imageOrientation;
अगर CMSampleBuffer
का इस्तेमाल किया जाता है, तो यह तरीका अपनाएं:
-
इसमें शामिल इमेज डेटा का ओरिएंटेशन तय करें
CMSampleBuffer
.इमेज का ओरिएंटेशन पाने के लिए:
Swift
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> UIImage.Orientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftMirrored : .right case .landscapeLeft: return cameraPosition == .front ? .downMirrored : .up case .portraitUpsideDown: return cameraPosition == .front ? .rightMirrored : .left case .landscapeRight: return cameraPosition == .front ? .upMirrored : .down case .faceDown, .faceUp, .unknown: return .up } }
Objective-C
- (UIImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored : UIImageOrientationRight; case UIDeviceOrientationLandscapeLeft: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored : UIImageOrientationUp; case UIDeviceOrientationPortraitUpsideDown: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored : UIImageOrientationLeft; case UIDeviceOrientationLandscapeRight: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored : UIImageOrientationDown; case UIDeviceOrientationUnknown: case UIDeviceOrientationFaceUp: case UIDeviceOrientationFaceDown: return UIImageOrientationUp; } }
- इसका इस्तेमाल करके एक
VisionImage
ऑब्जेक्ट बनाएंCMSampleBuffer
ऑब्जेक्ट और ओरिएंटेशन:Swift
let image = VisionImage(buffer: sampleBuffer) image.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition)
Objective-C
MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer]; image.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
3. इमेज लेबलर चलाएं
एसिंक्रोनस तरीके से:
Swift
imageLabeler.process(image) { labels, error in guard error == nil, let labels = labels, !labels.isEmpty else { // Handle the error. return } // Show results. }
Objective-C
[imageLabeler processImage:image completion:^(NSArray*_Nullable labels, NSError *_Nullable error) { if (labels.count == 0) { // Handle the error. return; } // Show results. }];
सिंक्रोनस:
Swift
var labels: [ImageLabel] do { labels = try imageLabeler.results(in: image) } catch let error { // Handle the error. return } // Show results.
Objective-C
NSError *error; NSArray*labels = [imageLabeler resultsInImage:image error:&error]; // Show results or handle the error.
4. लेबल किए गए ऑब्जेक्ट के बारे में जानकारी पाना
अगर इमेज लेबल करने की कार्रवाई सफल होती है, तो यहImageLabel
. हर ImageLabel
कुछ ऐसा दिखाता है जो
लेबल किया गया है. आप हर लेबल के टेक्स्ट की जानकारी पा सकते है (अगर
TensorFlow Lite मॉडल फ़ाइल का मेटाडेटा), कॉन्फ़िडेंस स्कोर, और इंडेक्स.
उदाहरण के लिए:
Swift
for label in labels { let labelText = label.text let confidence = label.confidence let index = label.index }
Objective-C
for (MLKImageLabel *label in labels) { NSString *labelText = label.text; float confidence = label.confidence; NSInteger index = label.index; }
रीयल-टाइम परफ़ॉर्मेंस को बेहतर बनाने के लिए सलाह
अगर आपको रीयल-टाइम ऐप्लिकेशन में इमेज को लेबल करना है, तो इन निर्देशों का पालन करें सबसे सही फ़्रेमरेट हासिल करने के लिए दिशा-निर्देश:
- वीडियो फ़्रेम प्रोसेस करने के लिए, डिटेक्टर के
results(in:)
सिंक्रोनस एपीआई का इस्तेमाल करें. कॉल करेंAVCaptureVideoDataOutputSampleBufferDelegate
काcaptureOutput(_, didOutput:from:)
फ़ंक्शन का इस्तेमाल, दिए गए वीडियो से सिंक्रोनस रूप से नतीजे पाने के लिए किया जाता है फ़्रेम. रखेंAVCaptureVideoDataOutput
का डिटेक्टर को कॉल थ्रॉटल करने के लिए,alwaysDiscardsLateVideoFrames
कोtrue
के तौर पर सबमिट किया है. अगर नए डिटेक्टर के चलने के दौरान वीडियो फ़्रेम उपलब्ध हो जाता है. उसे छोड़ दिया जाएगा. - अगर ग्राफ़िक ओवरले करने के लिए डिटेक्टर के आउटपुट का इस्तेमाल किया जाता है, तो इनपुट इमेज को चुनने के बाद, पहले एमएल किट से नतीजा पाएं. इसके बाद, इमेज को रेंडर करें और ओवरले को एक ही चरण में पूरा करें. ऐसा करके, डिसप्ले सरफ़ेस पर रेंडर हो जाता है प्रोसेस किए गए हर इनपुट फ़्रेम के लिए, सिर्फ़ एक बार. updatePreviewOverlayViewWithLastFrame देखें उदाहरण के लिए, एमएल किट क्विकस्टार्ट सैंपल में.