iOS에서 AutoML 학습 모델을 사용하여 이미지 라벨 지정
AutoML Vision Edge를 사용하여 자체 모델을 학습시킨 후 앱에서 모델을 사용하여 이미지에 라벨을 지정할 수 있습니다.
AutoML Vision Edge에서 학습된 모델을 통합하는 방법에는 두 가지가 있습니다. 모델의 파일을 Xcode 프로젝트로 복사하여 모델을 번들로 묶거나 Firebase에서 동적으로 다운로드할 수 있습니다.
모델 번들 옵션 | |
---|---|
앱에 번들로 제공 |
|
Firebase로 호스팅 |
|
사용해 보기
- 샘플 앱을 사용해 이 API의 사용 예를 살펴보세요.
시작하기 전에
1. Podfile에 ML Kit 라이브러리를 포함합니다.앱과 모델을 번들로 묶는 경우:
pod 'GoogleMLKit/ImageLabelingAutoML'
LinkFirebase
종속 항목을 추가합니다.
pod 'GoogleMLKit/ImageLabelingAutoML' pod 'GoogleMLKit/LinkFirebase'
.xcworkspace
code>를 사용하여 Xcode 프로젝트를 엽니다. ML Kit는 Xcode 버전 13.2.1 이상에서 지원됩니다.
3. 모델을 다운로드하려면 iOS 프로젝트에 Firebase를 추가해야 합니다(아직 추가하지 않은 경우). 모델을 번들로 묶을 때는 이 작업이 필요하지 않습니다.
1. 모델 로드
로컬 모델 소스 구성
모델을 앱과 함께 번들로 묶으려면 다음 단계를 따르세요.1. Firebase Console에서 다운로드한 zip 보관 파일에서 모델과 모델의 메타데이터를 폴더로 추출합니다.
your_model_directory |____dict.txt |____manifest.json |____model.tflite
2. 폴더를 Xcode 프로젝트에 복사합니다. 이때 폴더 참조 만들기를 선택해야 합니다. 모델 파일과 메타데이터가 앱 번들에 포함되며 ML Kit에서 사용할 수 있습니다.
3. 모델 매니페스트 파일의 경로를 지정하여
AutoMLImageLabelerLocalModel
객체를 만듭니다.
guard let manifestPath = Bundle.main.path( forResource: "manifest", ofType: "json", inDirectory: "your_model_directory" ) else { return } let localModel = AutoMLImageLabelerLocalModel(manifestPath: manifestPath)
NSString *manifestPath = [NSBundle.mainBundle pathForResource:@"manifest" ofType:@"json" inDirectory:@"your_model_directory"]; MLKAutoMLImageLabelerLocalModel *localModel = [[MLKAutoMLImageLabelerLocalModel alloc] initWithManifestPath:manifestPath];
Firebase 호스팅 모델 소스 구성
원격 호스팅 모델을 사용하려면 모델을 게시할 때 할당한 이름을 지정하여 AutoMLImageLabelerRemoteModel
객체를 만듭니다.
let remoteModel = AutoMLImageLabelerRemoteModel( name: "your_remote_model" // The name you assigned in // the Firebase console. )
MLKAutoMLImageLabelerRemoteModel *remoteModel = [[MLKAutoMLImageLabelerRemoteModel alloc] initWithName:@"your_remote_model"]; // The name you assigned in // the Firebase console.
이제 다운로드를 허용할 조건을 지정하여 모델 다운로드 작업을 시작합니다. 모델이 기기에 없거나 최신 버전의 모델을 사용할 수 있으면 모델이 Firebase에서 비동기식으로 다운로드됩니다.
let downloadConditions = ModelDownloadConditions( allowsCellularAccess: true, allowsBackgroundDownloading: true ) let downloadProgress = ModelManager.modelManager().download( remoteModel, conditions: downloadConditions )
MLKModelDownloadConditions *downloadConditions = [[MLKModelDownloadConditions alloc] initWithAllowsCellularAccess:YES allowsBackgroundDownloading:YES]; NSProgress *downloadProgress = [[MLKModelManager modelManager] downloadModel:remoteModel conditions:downloadConditions];
대부분의 앱은 초기화 코드에서 다운로드 작업을 시작하지만 모델 사용이 필요한 시점 이전에 언제든지 다운로드할 수 있습니다.
모델에서 이미지 라벨러 만들기
모델 소스를 구성한 후 모델 소스 중 하나에서 ImageLabeler
객체를 만듭니다.
로컬로 번들된 모델만 있다면 AutoMLImageLabelerLocalModel
객체에서 라벨러를 만들고 필요한 신뢰도 점수 임곗값을 구성합니다 (모드 평가 참고).
let options = AutoMLImageLabelerOptions(localModel: localModel) options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Firebase console // to determine an appropriate value. let imageLabeler = ImageLabeler.imageLabeler(options: options)
MLKAutoMLImageLabelerOptions *options = [[MLKAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel]; options.confidenceThreshold = @(0.0); // Evaluate your model in the Firebase console // to determine an appropriate value. MLKImageLabeler *imageLabeler = [MLKImageLabeler imageLabelerWithOptions:options];
원격 호스팅 모델이 있다면 실행 전에 모델이 다운로드되었는지 확인해야 합니다. 모델 관리자의 isModelDownloaded
(remoteModel:) 메서드로도 모델 다운로드 작업의 상태를 확인할 수 있습니다.
레이블러를 실행하기 전에만 확인하면 되지만, 원격 호스팅 모델과 로컬로 번들된 모델이 모두 있는 경우 ImageLabeler
를 인스턴스화할 때 이 검사를 실행하는 것이 좋습니다. 다운로드된 경우 원격 모델에서 레이블러를 만들고 그렇지 않은 경우 로컬 모델에서 레이블러를 만듭니다.
var options: AutoMLImageLabelerOptions! if (ModelManager.modelManager().isModelDownloaded(remoteModel)) { options = AutoMLImageLabelerOptions(remoteModel: remoteModel) } else { options = AutoMLImageLabelerOptions(localModel: localModel) } options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Firebase console // to determine an appropriate value. let imageLabeler = ImageLabeler.imageLabeler(options: options)
MLKAutoMLImageLabelerOptions *options; if ([[MLKModelManager modelManager] isModelDownloaded:remoteModel]) { options = [[MLKAutoMLImageLabelerOptions alloc] initWithRemoteModel:remoteModel]; } else { options = [[MLKAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel]; } options.confidenceThreshold = @(0.0); // Evaluate your model in the Firebase console // to determine an appropriate value. MLKImageLabeler *imageLabeler = [MLKImageLabeler imageLabelerWithOptions:options];
원격 호스팅 모델만 있다면 모델 다운로드 여부가 확인될 때까지 모델 관련 기능 사용을 중지해야 합니다(예: UI 비활성화 또는 숨김).
기본 알림 센터에 관찰자를 연결하여 모델 다운로드 상태를 가져올 수 있습니다. 다운로드하는 데 시간이 걸릴 수 있고 다운로드가 완료되면 원래 객체가 해제될 수 있으므로 관찰자 블록의 self
에 약한 참조를 사용하세요. 예를 들면 다음과 같습니다.
NotificationCenter.default.addObserver( forName: .mlkitModelDownloadDidSucceed, object: nil, queue: nil ) { [weak self] notification in guard let strongSelf = self, let userInfo = notification.userInfo, let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue] as? RemoteModel, model.name == "your_remote_model" else { return } // The model was downloaded and is available on the device } NotificationCenter.default.addObserver( forName: .mlkitModelDownloadDidFail, object: nil, queue: nil ) { [weak self] notification in guard let strongSelf = self, let userInfo = notification.userInfo, let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue] as? RemoteModel else { return } let error = userInfo[ModelDownloadUserInfoKey.error.rawValue] // ... }
__weak typeof(self) weakSelf = self; [NSNotificationCenter.defaultCenter addObserverForName:MLKModelDownloadDidSucceedNotification object:nil queue:nil usingBlock:^(NSNotification *_Nonnull note) { if (weakSelf == nil | note.userInfo == nil) { return; } __strong typeof(self) strongSelf = weakSelf; MLKRemoteModel *model = note.userInfo[MLKModelDownloadUserInfoKeyRemoteModel]; if ([model.name isEqualToString:@"your_remote_model"]) { // The model was downloaded and is available on the device } }]; [NSNotificationCenter.defaultCenter addObserverForName:MLKModelDownloadDidFailNotification object:nil queue:nil usingBlock:^(NSNotification *_Nonnull note) { if (weakSelf == nil | note.userInfo == nil) { return; } __strong typeof(self) strongSelf = weakSelf; NSError *error = note.userInfo[MLKModelDownloadUserInfoKeyError]; }];
2. 입력 이미지 준비
UIImage
또는 CMSampleBuffer
를 사용하여 VisionImage
객체를 만듭니다.
UIImage
를 사용하는 경우 다음 단계를 따르세요.
UIImage
로VisionImage
객체를 만듭니다. 올바른.orientation
을 지정해야 합니다.let image = VisionImage(image: UIImage) visionImage.orientation = image.imageOrientation
MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image]; visionImage.orientation = image.imageOrientation;
CMSampleBuffer
를 사용하는 경우 다음 단계를 따르세요.
-
CMSampleBuffer
에 포함된 이미지 데이터의 방향을 지정합니다.이미지 방향을 가져오는 방법은 다음과 같습니다.
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> UIImage.Orientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftMirrored : .right case .landscapeLeft: return cameraPosition == .front ? .downMirrored : .up case .portraitUpsideDown: return cameraPosition == .front ? .rightMirrored : .left case .landscapeRight: return cameraPosition == .front ? .upMirrored : .down case .faceDown, .faceUp, .unknown: return .up } }
- (UIImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored : UIImageOrientationRight; case UIDeviceOrientationLandscapeLeft: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored : UIImageOrientationUp; case UIDeviceOrientationPortraitUpsideDown: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored : UIImageOrientationLeft; case UIDeviceOrientationLandscapeRight: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored : UIImageOrientationDown; case UIDeviceOrientationUnknown: case UIDeviceOrientationFaceUp: case UIDeviceOrientationFaceDown: return UIImageOrientationUp; } }
CMSampleBuffer
객체와 방향을 사용하여VisionImage
객체를 만듭니다.let image = VisionImage(buffer: sampleBuffer) image.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition)
MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer]; image.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
3. 이미지 라벨러 실행
비동기식으로:
imageLabeler.process(image) { labels, error in guard error == nil, let labels = labels, !labels.isEmpty else { // Handle the error. return } // Show results. }
[imageLabeler processImage:image completion:^(NSArray*_Nullable labels, NSError *_Nullable error) { if (labels.count == 0) { // Handle the error. return; } // Show results. }];
동기식으로:
var labels: [ImageLabel] do { labels = try imageLabeler.results(in: image) } catch let error { // Handle the error. return } // Show results.
NSError *error; NSArray*labels = [imageLabeler resultsInImage:image error:&error]; // Show results or handle the error.
4. 라벨이 지정된 객체 정보 가져오기
이미지 라벨 지정 작업이 성공하면ImageLabel
의 배열이 반환됩니다. 각 ImageLabel
은 이미지에서 라벨이 지정된 항목을 나타냅니다. 각 라벨의 텍스트 설명 (TensorFlow Lite 모델 파일의 메타데이터에 표시되는 경우), 신뢰도 점수, 색인을 가져올 수 있습니다.
예를 들면 다음과 같습니다.
for label in labels { let labelText = label.text let confidence = label.confidence let index = label.index }
for (MLKImageLabel *label in labels) { NSString *labelText = label.text; float confidence = label.confidence; NSInteger index = label.index; }
실시간 성능 향상을 위한 팁
실시간 애플리케이션에서 이미지 라벨을 지정하려는 경우 최상의 프레임 속도를 얻으려면 다음 안내를 따르세요.
- 동영상 프레임을 처리하려면 감지기의
results(in:)
동기식 API를 사용하세요.AVCaptureVideoDataOutputSampleBufferDelegate
의captureOutput(_, didOutput:from:)
함수에서 이 메서드를 호출하여 지정된 동영상 프레임에서 결과를 동기식으로 가져옵니다.AVCaptureVideoDataOutput
의alwaysDiscardsLateVideoFrames
를true
로 유지하여 감지기 호출을 제한합니다. 감지기가 실행 중일 때 새 동영상 프레임이 제공되면 삭제됩니다. - 인식기 출력을 사용하여 입력 이미지에 그래픽을 오버레이하는 경우 먼저 ML Kit에서 결과를 가져온 후 이미지를 렌더링하고 단일 단계로 오버레이합니다. 이렇게 하면 처리된 입력 프레임별로 한 번만 디스플레이 표면에 렌더링됩니다. 예시는 ML Kit 빠른 시작 샘플의 updatePreviewOverlayViewWithLastFrame을 참고하세요.