ติดป้ายกำกับรูปภาพด้วยโมเดลที่ฝึกด้วย AutoML บน iOS
หลังจากที่คุณฝึกโมเดลของคุณเองโดยใช้ AutoML Vision Edge ก็ใช้ในแอปเพื่อติดป้ายกำกับรูปภาพได้
การผสานรวมโมเดลที่ฝึกจาก AutoML Vision Edge ทำได้ 2 วิธี คุณสามารถ รวมโมเดลโดยคัดลอกไฟล์ของโมเดลลงในโปรเจ็กต์ Xcode ของคุณ หรือคุณ จะสามารถดาวน์โหลดแบบไดนามิกจาก Firebase
ตัวเลือกการรวมกลุ่มโมเดล | |
---|---|
รวมกลุ่มในแอปของคุณ |
|
โฮสต์กับ Firebase |
|
ลองเลย
- ลองใช้แอปตัวอย่างเพื่อ ดูตัวอย่างการใช้ API นี้
ก่อนเริ่มต้น
1. รวมไลบรารี ML Kit ไว้ใน Podfile:สำหรับการรวมโมเดลกับแอป ให้ทำดังนี้ วันที่
pod 'GoogleMLKit/ImageLabelingAutoML'สำหรับการดาวน์โหลดโมเดลแบบไดนามิกจาก Firebase ให้เพิ่ม
LinkFirebase
การพึ่งพา:
pod 'GoogleMLKit/ImageLabelingAutoML' pod 'GoogleMLKit/LinkFirebase'2. หลังจากติดตั้งหรืออัปเดตพ็อดของโปรเจ็กต์แล้ว ให้เปิดโปรเจ็กต์ Xcode โดยใช้
.xcworkspace
รหัส> Xcode รองรับ ML Kit
เวอร์ชัน 13.2.1 ขึ้นไป
3. หากต้องการดาวน์โหลดโมเดล โปรดตรวจสอบว่า
เพิ่ม Firebase ลงในโปรเจ็กต์ iOS
หากคุณยังไม่ได้ดำเนินการ ไม่จำเป็นต้องทำขั้นตอนนี้เมื่อคุณรวมชุด
โมเดล
1. โหลดโมเดล
กำหนดค่าต้นทางของโมเดลในเครื่อง
วิธีรวมโมเดลกับแอปมีดังนี้1. แยกโมเดลและข้อมูลเมตาของโมเดลจากชุดไฟล์ ZIP ที่คุณดาวน์โหลด จากคอนโซล Firebase ลงในโฟลเดอร์ ให้ทำดังนี้
your_model_directory |____dict.txt |____manifest.json |____model.tfliteทั้ง 3 ไฟล์ต้องอยู่ในโฟลเดอร์เดียวกัน เราขอแนะนำให้คุณใช้ไฟล์ ขณะที่คุณดาวน์โหลด โดยไม่ต้องแก้ไข (รวมถึงชื่อไฟล์)
2. คัดลอกโฟลเดอร์ไปยังโปรเจ็กต์ Xcode แล้วเลือก โปรดสร้างการอ้างอิงโฟลเดอร์เมื่อคุณสร้าง ไฟล์โมเดลและข้อมูลเมตา จะรวมอยู่ใน App Bundle และพร้อมใช้งานสำหรับ ML Kit
3. สร้างออบเจ็กต์
AutoMLImageLabelerLocalModel
โดยระบุเส้นทางไปยัง
ไฟล์ Manifest ของโมเดล:
Swift
guard let manifestPath = Bundle.main.path( forResource: "manifest", ofType: "json", inDirectory: "your_model_directory" ) else { return } let localModel = AutoMLImageLabelerLocalModel(manifestPath: manifestPath)
Objective-C
NSString *manifestPath = [NSBundle.mainBundle pathForResource:@"manifest" ofType:@"json" inDirectory:@"your_model_directory"]; MLKAutoMLImageLabelerLocalModel *localModel = [[MLKAutoMLImageLabelerLocalModel alloc] initWithManifestPath:manifestPath];
กำหนดค่าแหล่งที่มาของโมเดลที่โฮสต์กับ Firebase
หากต้องการใช้โมเดลที่โฮสต์จากระยะไกล ให้สร้าง AutoMLImageLabelerRemoteModel
โดยระบุชื่อที่คุณกำหนดโมเดลเมื่อเผยแพร่:
Swift
let remoteModel = AutoMLImageLabelerRemoteModel( name: "your_remote_model" // The name you assigned in // the Firebase console. )
Objective-C
MLKAutoMLImageLabelerRemoteModel *remoteModel = [[MLKAutoMLImageLabelerRemoteModel alloc] initWithName:@"your_remote_model"]; // The name you assigned in // the Firebase console.
จากนั้นเริ่มงานดาวน์โหลดโมเดล โดยระบุเงื่อนไขที่ ที่คุณต้องการอนุญาตให้ดาวน์โหลด หากไม่มีรุ่นนี้อยู่ในอุปกรณ์ หรือรุ่นที่ใหม่กว่า ของโมเดลพร้อมใช้งาน งานจะดาวน์โหลด จาก Firebase ได้ดังนี้
Swift
let downloadConditions = ModelDownloadConditions( allowsCellularAccess: true, allowsBackgroundDownloading: true ) let downloadProgress = ModelManager.modelManager().download( remoteModel, conditions: downloadConditions )
Objective-C
MLKModelDownloadConditions *downloadConditions = [[MLKModelDownloadConditions alloc] initWithAllowsCellularAccess:YES allowsBackgroundDownloading:YES]; NSProgress *downloadProgress = [[MLKModelManager modelManager] downloadModel:remoteModel conditions:downloadConditions];
แอปจำนวนมากเริ่มงานดาวน์โหลดในโค้ดเริ่มต้น แต่คุณ จากนั้นคุณจะสามารถทำได้ทุกเมื่อก่อนที่จะต้องใช้โมเดลนี้
สร้างเครื่องมือติดป้ายกำกับรูปภาพจากโมเดล
หลังจากกำหนดค่าแหล่งที่มาของโมเดลแล้ว ให้สร้างออบเจ็กต์ ImageLabeler
จาก 1
ทั้งหมด
หากคุณมีเฉพาะโมเดลที่รวมภายในเครื่อง ให้สร้างผู้ติดป้ายกำกับจาก
AutoMLImageLabelerLocalModel
และกำหนดค่าคะแนนความเชื่อมั่น
เกณฑ์ที่ต้องการกำหนด (ดูประเมินโหมดของคุณ
Swift
let options = AutoMLImageLabelerOptions(localModel: localModel) options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Firebase console // to determine an appropriate value. let imageLabeler = ImageLabeler.imageLabeler(options: options)
Objective-C
MLKAutoMLImageLabelerOptions *options = [[MLKAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel]; options.confidenceThreshold = @(0.0); // Evaluate your model in the Firebase console // to determine an appropriate value. MLKImageLabeler *imageLabeler = [MLKImageLabeler imageLabelerWithOptions:options];
หากคุณมีโมเดลที่โฮสต์จากระยะไกล คุณจะต้องตรวจสอบว่ามีการ
ซึ่งดาวน์โหลดมาก่อนที่จะเรียกใช้ คุณตรวจสอบสถานะการดาวน์โหลดโมเดลได้
โดยใช้เมธอด isModelDownloaded
(remoteModel:) ของตัวจัดการโมเดล
แม้ว่าคุณจะต้องยืนยันเรื่องนี้ก่อนเรียกใช้ผู้ติดป้ายกำกับเท่านั้นหากคุณ
มีทั้งโมเดลที่โฮสต์จากระยะไกลและโมเดลที่รวมอยู่ภายใน
เหมาะสมที่จะดำเนินการตรวจสอบนี้เมื่อเริ่มต้น ImageLabeler
: สร้าง
ผู้ติดป้ายกำกับจากโมเดลระยะไกลหากดาวน์โหลดแล้ว และจากโมเดลในเครื่อง
หรือไม่เช่นนั้น
Swift
var options: AutoMLImageLabelerOptions! if (ModelManager.modelManager().isModelDownloaded(remoteModel)) { options = AutoMLImageLabelerOptions(remoteModel: remoteModel) } else { options = AutoMLImageLabelerOptions(localModel: localModel) } options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Firebase console // to determine an appropriate value. let imageLabeler = ImageLabeler.imageLabeler(options: options)
Objective-C
MLKAutoMLImageLabelerOptions *options; if ([[MLKModelManager modelManager] isModelDownloaded:remoteModel]) { options = [[MLKAutoMLImageLabelerOptions alloc] initWithRemoteModel:remoteModel]; } else { options = [[MLKAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel]; } options.confidenceThreshold = @(0.0); // Evaluate your model in the Firebase console // to determine an appropriate value. MLKImageLabeler *imageLabeler = [MLKImageLabeler imageLabelerWithOptions:options];
หากคุณมีเฉพาะโมเดลที่โฮสต์จากระยะไกล คุณควรปิดใช้โมเดลที่เกี่ยวข้องกับ ตัวอย่างเช่น เป็นสีเทาหรือซ่อนบางส่วนของ UI จนถึง คุณยืนยันว่าดาวน์โหลดโมเดลแล้ว
คุณดูสถานะการดาวน์โหลดโมเดลได้โดยการแนบผู้สังเกตการณ์กับค่าเริ่มต้น
ศูนย์การแจ้งเตือน โปรดใช้การอ้างอิงที่ไม่รัดกุมไปยัง self
ในผู้สังเกตการณ์
บล็อก เนื่องจากการดาวน์โหลดอาจใช้เวลาสักครู่ และออบเจ็กต์เริ่มต้นอาจ
เมื่อการดาวน์โหลดเสร็จสิ้น เช่น
Swift
NotificationCenter.default.addObserver( forName: .mlkitModelDownloadDidSucceed, object: nil, queue: nil ) { [weak self] notification in guard let strongSelf = self, let userInfo = notification.userInfo, let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue] as? RemoteModel, model.name == "your_remote_model" else { return } // The model was downloaded and is available on the device } NotificationCenter.default.addObserver( forName: .mlkitModelDownloadDidFail, object: nil, queue: nil ) { [weak self] notification in guard let strongSelf = self, let userInfo = notification.userInfo, let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue] as? RemoteModel else { return } let error = userInfo[ModelDownloadUserInfoKey.error.rawValue] // ... }
Objective-C
__weak typeof(self) weakSelf = self; [NSNotificationCenter.defaultCenter addObserverForName:MLKModelDownloadDidSucceedNotification object:nil queue:nil usingBlock:^(NSNotification *_Nonnull note) { if (weakSelf == nil | note.userInfo == nil) { return; } __strong typeof(self) strongSelf = weakSelf; MLKRemoteModel *model = note.userInfo[MLKModelDownloadUserInfoKeyRemoteModel]; if ([model.name isEqualToString:@"your_remote_model"]) { // The model was downloaded and is available on the device } }]; [NSNotificationCenter.defaultCenter addObserverForName:MLKModelDownloadDidFailNotification object:nil queue:nil usingBlock:^(NSNotification *_Nonnull note) { if (weakSelf == nil | note.userInfo == nil) { return; } __strong typeof(self) strongSelf = weakSelf; NSError *error = note.userInfo[MLKModelDownloadUserInfoKeyError]; }];
2. เตรียมรูปภาพอินพุต
สร้างออบเจ็กต์ VisionImage
โดยใช้ UIImage
หรือ
CMSampleBuffer
หากคุณใช้ UIImage
ให้ทำตามขั้นตอนต่อไปนี้
- สร้างออบเจ็กต์
VisionImage
ด้วยUIImage
ตรวจสอบว่าได้ระบุ.orientation
ที่ถูกต้องSwift
let image = VisionImage(image: UIImage) visionImage.orientation = image.imageOrientation
Objective-C
MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image]; visionImage.orientation = image.imageOrientation;
หากคุณใช้ CMSampleBuffer
ให้ทำตามขั้นตอนต่อไปนี้
-
ระบุการวางแนวของข้อมูลภาพที่มีอยู่ใน
CMSampleBuffer
วิธีดูการวางแนวรูปภาพ
Swift
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> UIImage.Orientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftMirrored : .right case .landscapeLeft: return cameraPosition == .front ? .downMirrored : .up case .portraitUpsideDown: return cameraPosition == .front ? .rightMirrored : .left case .landscapeRight: return cameraPosition == .front ? .upMirrored : .down case .faceDown, .faceUp, .unknown: return .up } }
Objective-C
- (UIImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored : UIImageOrientationRight; case UIDeviceOrientationLandscapeLeft: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored : UIImageOrientationUp; case UIDeviceOrientationPortraitUpsideDown: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored : UIImageOrientationLeft; case UIDeviceOrientationLandscapeRight: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored : UIImageOrientationDown; case UIDeviceOrientationUnknown: case UIDeviceOrientationFaceUp: case UIDeviceOrientationFaceDown: return UIImageOrientationUp; } }
- สร้างออบเจ็กต์
VisionImage
โดยใช้CMSampleBuffer
วัตถุและการวางแนว:Swift
let image = VisionImage(buffer: sampleBuffer) image.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition)
Objective-C
MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer]; image.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
3. เรียกใช้เครื่องมือติดป้ายกำกับรูปภาพ
ไม่พร้อมกัน:
Swift
imageLabeler.process(image) { labels, error in guard error == nil, let labels = labels, !labels.isEmpty else { // Handle the error. return } // Show results. }
Objective-C
[imageLabeler processImage:image completion:^(NSArray*_Nullable labels, NSError *_Nullable error) { if (labels.count == 0) { // Handle the error. return; } // Show results. }];
พร้อมกัน:
Swift
var labels: [ImageLabel] do { labels = try imageLabeler.results(in: image) } catch let error { // Handle the error. return } // Show results.
Objective-C
NSError *error; NSArray*labels = [imageLabeler resultsInImage:image error:&error]; // Show results or handle the error.
4. รับข้อมูลเกี่ยวกับออบเจ็กต์ที่ติดป้ายกำกับ
หากการติดป้ายกำกับรูปภาพสำเร็จ จะแสดงผลอาร์เรย์ของImageLabel
ImageLabel
แต่ละรายการแสดงถึงสิ่งที่
ติดป้ายกำกับในรูปภาพ คุณสามารถดูคำอธิบายข้อความของแต่ละป้ายกำกับ (ถ้ามี
ข้อมูลเมตาของไฟล์โมเดล TensorFlow Lite) คะแนนความเชื่อมั่น และดัชนี
เช่น
Swift
for label in labels { let labelText = label.text let confidence = label.confidence let index = label.index }
Objective-C
for (MLKImageLabel *label in labels) { NSString *labelText = label.text; float confidence = label.confidence; NSInteger index = label.index; }
เคล็ดลับในการปรับปรุงประสิทธิภาพแบบเรียลไทม์
หากต้องการติดป้ายกำกับรูปภาพในแอปพลิเคชันแบบเรียลไทม์ ให้ทำตามดังนี้ เพื่อให้ได้อัตราเฟรมที่ดีที่สุด
- สำหรับการประมวลผลเฟรมวิดีโอ ให้ใช้ API แบบซิงโครนัสของ
results(in:)
ในตัวตรวจจับ โทร เมธอดนี้จาก ของAVCaptureVideoDataOutputSampleBufferDelegate
captureOutput(_, didOutput:from:)
เพื่อให้ได้ผลลัพธ์จากวิดีโอที่ระบุแบบพร้อมกัน เฟรม เก็บ ของAVCaptureVideoDataOutput
alwaysDiscardsLateVideoFrames
เป็นtrue
เพื่อควบคุมการโทรหาตัวตรวจจับ หาก เฟรมวิดีโอจะพร้อมใช้งานขณะที่ตัวตรวจจับทำงานอยู่ เฟรมนั้นจะหายไป - หากคุณใช้เอาต์พุตของเครื่องมือตรวจจับเพื่อวางซ้อนกราฟิก รูปภาพอินพุต รับผลลัพธ์จาก ML Kit ก่อน จากนั้นจึงแสดงผลรูปภาพ ซ้อนทับในขั้นตอนเดียว การดำเนินการดังกล่าวจะแสดงบนพื้นผิวจอแสดงผล เพียงครั้งเดียวสำหรับแต่ละเฟรมอินพุตที่ประมวลผลแล้ว ดู updatePreviewOverlayViewWithLastFrame ในตัวอย่างการเริ่มต้นอย่างรวดเร็วใน ML Kit