iOS'te görüntüleri AutoML tarafından eğitilmiş bir modelle etiketleme

AutoML Vision Edge'i kullanarak kendi modelinizi eğittikten sonra uygulamanızda resimleri etiketlemek için kullanabilirsiniz.

AutoML Vision Edge'den eğitilen modelleri iki şekilde entegre edebilirsiniz. Şunları yapabilirsiniz: model dosyalarını Xcode projenize kopyalayarak modeli paketleyebilir veya Firebase'den dinamik olarak indirebilir.

Model paketleme seçenekleri
Uygulamanızda paket olarak sunuluyor
  • Model, paketin bir parçasıdır
  • iOS cihaz çevrimdışı olsa bile model hemen kullanılabilir
  • Firebase projesine gerek yoktur
Firebase ile barındırılan
  • Modeli şu klasöre yükleyerek barındırın: Firebase Makine Öğrenimi
  • Uygulama paketi boyutunu küçültür
  • Model istek üzerine indirilir
  • Uygulamanızı yeniden yayınlamadan model güncellemelerini aktarma
  • Firebase Remote Config ile kolay A/B testi
  • Firebase projesi gerekir

Deneyin

Başlamadan önce

1. ML Kit kitaplıklarını Podfile dosyanıza ekleyin:

Bir modeli uygulamanızla paketlemek için:
    pod 'GoogleMLKit/ImageLabelingAutoML'
    
Firebase'den dinamik olarak model indirmek için LinkFirebase bağımlılık:
    pod 'GoogleMLKit/ImageLabelingAutoML'
    pod 'GoogleMLKit/LinkFirebase'
    
2. Projenizin kapsüllerini yükledikten veya güncelledikten sonra Xcode projenizi açın kendi .xcworkspacekodunu> kullanır. Makine Öğrenimi Kiti, Xcode'da desteklenir Sürüm 13.2.1 veya daha yeni bir sürüme sahip olmanız gerekir. 3. Bir model indirmek istiyorsanız şunu yaptığınızdan emin olun: Firebase'i iOS projenize ekleyin, (ücretsizdir) . Bu, modeli.

1. Modeli yükleme

Yerel model kaynağını yapılandırma

Modeli uygulamanızla paketlemek için:

1. İndirdiğiniz zip arşivinden modeli ve meta verilerini çıkarın Firebase konsolundan bir klasöre taşımak için:
    your_model_directory
      |____dict.txt
      |____manifest.json
      |____model.tflite
    
. Üç dosya da aynı klasörde olmalıdır. Dosyaları (dosya adları da dahil olmak üzere) değiştirmeden yeni bir dosya indirir.

2. Klasörü Xcode projenize kopyalayın. Kopyalama işlemini Klasör başvuruları oluşturun. Model dosyası ve meta veriler uygulama paketine dahil edilecek ve ML Kit tarafından kullanılabilecek.

3. AutoMLImageLabelerLocalModel nesnesini oluşturarak model manifest dosyası:

Swift

guard let manifestPath = Bundle.main.path(
    forResource: "manifest",
    ofType: "json",
    inDirectory: "your_model_directory"
) else { return }
let localModel = AutoMLImageLabelerLocalModel(manifestPath: manifestPath)

Objective-C

NSString *manifestPath =
    [NSBundle.mainBundle pathForResource:@"manifest"
                                  ofType:@"json"
                             inDirectory:@"your_model_directory"];
MLKAutoMLImageLabelerLocalModel *localModel =
    [[MLKAutoMLImageLabelerLocalModel alloc] initWithManifestPath:manifestPath];

Firebase tarafından barındırılan bir model kaynağını yapılandırma

Uzaktan barındırılan modeli kullanmak için bir AutoMLImageLabelerRemoteModel oluşturun. nesnesini tanımlarken modele atadığınız adı belirtin:

Swift

let remoteModel = AutoMLImageLabelerRemoteModel(
    name: "your_remote_model"  // The name you assigned in
                               // the Firebase console.
)

Objective-C

MLKAutoMLImageLabelerRemoteModel *remoteModel =
    [[MLKAutoMLImageLabelerRemoteModel alloc]
        initWithName:@"your_remote_model"];  // The name you assigned in
                                             // the Firebase console.

Ardından, model indirme görevini başlatmak için model indirme görevinizi indirmeye izin vermek istiyorsunuz. Model cihazda yoksa veya sürümü kullanılabiliyorsa görev, yeni bir sürümün yüklü olduğu modeliniz:

Swift

let downloadConditions = ModelDownloadConditions(
  allowsCellularAccess: true,
  allowsBackgroundDownloading: true
)

let downloadProgress = ModelManager.modelManager().download(
  remoteModel,
  conditions: downloadConditions
)

Objective-C

MLKModelDownloadConditions *downloadConditions =
    [[MLKModelDownloadConditions alloc] initWithAllowsCellularAccess:YES
                                         allowsBackgroundDownloading:YES];

NSProgress *downloadProgress =
    [[MLKModelManager modelManager] downloadModel:remoteModel
                                       conditions:downloadConditions];

Birçok uygulama, indirme görevini başlatma kodunda başlatır, ancak bunu, modeli kullanmaya başlamadan önce istediğiniz zaman yapabilirsiniz.

Modelinizden görüntü etiketleyici oluşturma

Model kaynaklarınızı yapılandırdıktan sonra bir kaynaktan ImageLabeler nesnesi oluşturun sağlayabilir.

Yalnızca yerel olarak paketlenmiş bir modeliniz varsa AutoMLImageLabelerLocalModel nesnesini tanımlayın ve güven puanını yapılandırın (bkz. Modunuzu değerlendirme):

Swift

let options = AutoMLImageLabelerOptions(localModel: localModel)
options.confidenceThreshold = NSNumber(value: 0.0)  // Evaluate your model in the Firebase console
                                                    // to determine an appropriate value.
let imageLabeler = ImageLabeler.imageLabeler(options: options)

Objective-C

MLKAutoMLImageLabelerOptions *options =
    [[MLKAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel];
options.confidenceThreshold = @(0.0);  // Evaluate your model in the Firebase console
                                       // to determine an appropriate value.
MLKImageLabeler *imageLabeler =
    [MLKImageLabeler imageLabelerWithOptions:options];

Uzaktan barındırılan bir modeliniz varsa bu modelin indiremezsiniz. Model indirme işleminin durumunu kontrol edebilirsiniz. model yöneticisinin isModelDownloaded(remoteModel:) yöntemini kullanarak göreviniz.

Etiketleyiciyi çalıştırmadan önce bunu onaylamanız yeterli olsa da hem uzaktan barındırılan hem de yerel olarak paketlenen ImageLabeler örneğini örneklendirirken şu kontrolü gerçekleştirmek mantıklıdır: etiketleyici indirilmişse uzak modelden ve yerel modelden aksi takdirde.

Swift

var options: AutoMLImageLabelerOptions!
if (ModelManager.modelManager().isModelDownloaded(remoteModel)) {
  options = AutoMLImageLabelerOptions(remoteModel: remoteModel)
} else {
  options = AutoMLImageLabelerOptions(localModel: localModel)
}
options.confidenceThreshold = NSNumber(value: 0.0)  // Evaluate your model in the Firebase console
                                                    // to determine an appropriate value.
let imageLabeler = ImageLabeler.imageLabeler(options: options)

Objective-C

MLKAutoMLImageLabelerOptions *options;
if ([[MLKModelManager modelManager] isModelDownloaded:remoteModel]) {
  options = [[MLKAutoMLImageLabelerOptions alloc] initWithRemoteModel:remoteModel];
} else {
  options = [[MLKAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel];
}
options.confidenceThreshold = @(0.0);  // Evaluate your model in the Firebase console
                                       // to determine an appropriate value.
MLKImageLabeler *imageLabeler =
    [MLKImageLabeler imageLabelerWithOptions:options];

Yalnızca uzaktan barındırılan bir modeliniz varsa modelle ilgili ayarını devre dışı bırakmanız gerekir. devre dışı bırakana veya gizleyene kadar (örneğin, modelin indirildiğini onaylayın.

Varsayılana gözlemleyiciler ekleyerek model indirme durumunu öğrenebilirsiniz. Bildirim Merkezi. Gözlemcide self için zayıf bir referans kullandığınızdan emin olun biraz zaman alabilir ve kaynak nesne indirme tamamlandığında serbest bırakılır. Örneğin:

Swift

NotificationCenter.default.addObserver(
    forName: .mlkitModelDownloadDidSucceed,
    object: nil,
    queue: nil
) { [weak self] notification in
    guard let strongSelf = self,
        let userInfo = notification.userInfo,
        let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
            as? RemoteModel,
        model.name == "your_remote_model"
        else { return }
    // The model was downloaded and is available on the device
}

NotificationCenter.default.addObserver(
    forName: .mlkitModelDownloadDidFail,
    object: nil,
    queue: nil
) { [weak self] notification in
    guard let strongSelf = self,
        let userInfo = notification.userInfo,
        let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
            as? RemoteModel
        else { return }
    let error = userInfo[ModelDownloadUserInfoKey.error.rawValue]
    // ...
}

Objective-C

__weak typeof(self) weakSelf = self;

[NSNotificationCenter.defaultCenter
    addObserverForName:MLKModelDownloadDidSucceedNotification
                object:nil
                 queue:nil
            usingBlock:^(NSNotification *_Nonnull note) {
              if (weakSelf == nil | note.userInfo == nil) {
                return;
              }
              __strong typeof(self) strongSelf = weakSelf;

              MLKRemoteModel *model = note.userInfo[MLKModelDownloadUserInfoKeyRemoteModel];
              if ([model.name isEqualToString:@"your_remote_model"]) {
                // The model was downloaded and is available on the device
              }
            }];

[NSNotificationCenter.defaultCenter
    addObserverForName:MLKModelDownloadDidFailNotification
                object:nil
                 queue:nil
            usingBlock:^(NSNotification *_Nonnull note) {
              if (weakSelf == nil | note.userInfo == nil) {
                return;
              }
              __strong typeof(self) strongSelf = weakSelf;

              NSError *error = note.userInfo[MLKModelDownloadUserInfoKeyError];
            }];

2. Giriş resmini hazırlama

Bir VisionImage nesnesi oluşturmak için UIImage veya CMSampleBuffer.

UIImage kullanıyorsanız şu adımları uygulayın:

  • UIImage ile bir VisionImage nesnesi oluşturun. Doğru .orientation değerini belirttiğinizden emin olun.

    Swift

    let image = VisionImage(image: UIImage)
    visionImage.orientation = image.imageOrientation

    Objective-C

    MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image];
    visionImage.orientation = image.imageOrientation;

CMSampleBuffer kullanıyorsanız şu adımları uygulayın:

  • Belgenin CMSampleBuffer

    Resmin yönünü öğrenmek için:

    Swift

    func imageOrientation(
      deviceOrientation: UIDeviceOrientation,
      cameraPosition: AVCaptureDevice.Position
    ) -> UIImage.Orientation {
      switch deviceOrientation {
      case .portrait:
        return cameraPosition == .front ? .leftMirrored : .right
      case .landscapeLeft:
        return cameraPosition == .front ? .downMirrored : .up
      case .portraitUpsideDown:
        return cameraPosition == .front ? .rightMirrored : .left
      case .landscapeRight:
        return cameraPosition == .front ? .upMirrored : .down
      case .faceDown, .faceUp, .unknown:
        return .up
      }
    }
          

    Objective-C

    - (UIImageOrientation)
      imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                             cameraPosition:(AVCaptureDevicePosition)cameraPosition {
      switch (deviceOrientation) {
        case UIDeviceOrientationPortrait:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored
                                                                : UIImageOrientationRight;
    
        case UIDeviceOrientationLandscapeLeft:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored
                                                                : UIImageOrientationUp;
        case UIDeviceOrientationPortraitUpsideDown:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored
                                                                : UIImageOrientationLeft;
        case UIDeviceOrientationLandscapeRight:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored
                                                                : UIImageOrientationDown;
        case UIDeviceOrientationUnknown:
        case UIDeviceOrientationFaceUp:
        case UIDeviceOrientationFaceDown:
          return UIImageOrientationUp;
      }
    }
          
  • Şu komutu kullanarak bir VisionImage nesnesi oluşturun: CMSampleBuffer nesne ve yön:

    Swift

    let image = VisionImage(buffer: sampleBuffer)
    image.orientation = imageOrientation(
      deviceOrientation: UIDevice.current.orientation,
      cameraPosition: cameraPosition)

    Objective-C

     MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer];
     image.orientation =
       [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                    cameraPosition:cameraPosition];

3. Görüntü etiketleyiciyi çalıştırma

Eşzamansız olarak:

Swift

imageLabeler.process(image) { labels, error in
    guard error == nil, let labels = labels, !labels.isEmpty else {
        // Handle the error.
        return
    }
    // Show results.
}

Objective-C

[imageLabeler
    processImage:image
      completion:^(NSArray *_Nullable labels,
                   NSError *_Nullable error) {
        if (labels.count == 0) {
            // Handle the error.
            return;
        }
        // Show results.
     }];

Eşzamanlı olarak:

Swift

var labels: [ImageLabel]
do {
    labels = try imageLabeler.results(in: image)
} catch let error {
    // Handle the error.
    return
}
// Show results.

Objective-C

NSError *error;
NSArray *labels =
    [imageLabeler resultsInImage:image error:&error];
// Show results or handle the error.

4. Etiketli nesneler hakkında bilgi edinme

Görüntü etiketleme işlemi başarılı olursa bir dizi ImageLabel. Her ImageLabel bir şeyi temsil eder resim olarak etiketlenmiştir. Her etiketin metin açıklamasını (varsa) TensorFlow Lite model dosyasının meta verileri), güven puanı ve dizin. Örneğin:

Swift

for label in labels {
  let labelText = label.text
  let confidence = label.confidence
  let index = label.index
}

Objective-C

for (MLKImageLabel *label in labels) {
  NSString *labelText = label.text;
  float confidence = label.confidence;
  NSInteger index = label.index;
}

Gerçek zamanlı performansı iyileştirmeye yönelik ipuçları

Görüntüleri gerçek zamanlı bir uygulamada etiketlemek isterseniz şu talimatları uygulayın: