在 iOS 上使用以 AutoML 訓練的模型為圖片加上標籤
使用 AutoML Vision Edge 自行訓練模型後, 即可在應用程式中為圖片加上標籤
有兩種方法可以整合透過 AutoML Vision Edge 訓練的模型。你可以 將模型的檔案複製到 Xcode 專案 可從 Firebase 動態下載
模型組合選項 | |
---|---|
在應用程式中封裝 |
|
由 Firebase 代管 |
|
立即試用
- 使用範例應用程式試試 請查看此 API 的使用範例。
事前準備
1. 在 Podfile 中加入 ML Kit 程式庫:將模型與應用程式綁定:
pod 'GoogleMLKit/ImageLabelingAutoML'如要從 Firebase 動態下載模型,請新增
LinkFirebase
依附元件:
pod 'GoogleMLKit/ImageLabelingAutoML' pod 'GoogleMLKit/LinkFirebase'2.安裝或更新專案的 Pod 後,請開啟 Xcode 專案 使用其中的
.xcworkspace
code>。Xcode 支援 ML Kit
13.2.1 以上版本。
3. 如要下載模型,請務必
將 Firebase 加進您的 iOS 專案,
如果尚未建立如果您將
模型
1. 載入模型
設定本機模型來源
如要將模型與應用程式組合,請按照下列步驟操作:1.從下載的 ZIP 封存檔中,擷取模型及其中繼資料 從 Firebase 控制台到資料夾:
your_model_directory |____dict.txt |____manifest.json |____model.tflite這三個檔案都必須位於同一個資料夾中。建議使用下列這些檔案 未經修改 (含檔案名稱)。
2.將資料夾複製到 Xcode 專案,謹慎選取 建立完成後建立資料夾參照。模型檔案和中繼資料 都必須納入應用程式套件,並提供給 ML Kit 使用。
3.建立
AutoMLImageLabelerLocalModel
物件,並指定指向
模型資訊清單檔案:
Swift
guard let manifestPath = Bundle.main.path( forResource: "manifest", ofType: "json", inDirectory: "your_model_directory" ) else { return } let localModel = AutoMLImageLabelerLocalModel(manifestPath: manifestPath)
Objective-C
NSString *manifestPath = [NSBundle.mainBundle pathForResource:@"manifest" ofType:@"json" inDirectory:@"your_model_directory"]; MLKAutoMLImageLabelerLocalModel *localModel = [[MLKAutoMLImageLabelerLocalModel alloc] initWithManifestPath:manifestPath];
設定 Firebase 託管的模型來源
如要使用遠端託管模型,請建立 AutoMLImageLabelerRemoteModel
物件中存放,並指定您發布模型時為其指派的名稱:
Swift
let remoteModel = AutoMLImageLabelerRemoteModel( name: "your_remote_model" // The name you assigned in // the Firebase console. )
Objective-C
MLKAutoMLImageLabelerRemoteModel *remoteModel = [[MLKAutoMLImageLabelerRemoteModel alloc] initWithName:@"your_remote_model"]; // The name you assigned in // the Firebase console.
接著,啟動模型下載工作,並指定在 您要允許下載的應用程式。如果裝置上沒有該型號,或者是新型號 就能以非同步方式下載該模型 建立 Vertex AI 模型
Swift
let downloadConditions = ModelDownloadConditions( allowsCellularAccess: true, allowsBackgroundDownloading: true ) let downloadProgress = ModelManager.modelManager().download( remoteModel, conditions: downloadConditions )
Objective-C
MLKModelDownloadConditions *downloadConditions = [[MLKModelDownloadConditions alloc] initWithAllowsCellularAccess:YES allowsBackgroundDownloading:YES]; NSProgress *downloadProgress = [[MLKModelManager modelManager] downloadModel:remoteModel conditions:downloadConditions];
許多應用程式會在初始化程式碼中啟動下載工作,但您 這個模型會在您需要使用模型前執行
從模型建立圖片標籤工具
設定模型來源後,請從該模型建立 ImageLabeler
物件
我們很快就會深入探討
所以目前先概略介紹
如果您只有本機組合模型,只要從
AutoMLImageLabelerLocalModel
物件,並設定可信度分數
需要的門檻 (請參閱「評估模式」:
Swift
let options = AutoMLImageLabelerOptions(localModel: localModel) options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Firebase console // to determine an appropriate value. let imageLabeler = ImageLabeler.imageLabeler(options: options)
Objective-C
MLKAutoMLImageLabelerOptions *options = [[MLKAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel]; options.confidenceThreshold = @(0.0); // Evaluate your model in the Firebase console // to determine an appropriate value. MLKImageLabeler *imageLabeler = [MLKImageLabeler imageLabelerWithOptions:options];
如果您使用的是遠端託管的模型,則須檢查該模型是否已
執行前已下載完成您可以查看模型下載狀態
使用模型管理員的 isModelDownloaded
(remoteModel:) 方法的工作。
雖然您不必在執行標籤人員前確認
同時擁有遠端託管和本機封裝模型
要在將 ImageLabeler
例項化時執行這項檢查:請建立
下載自遠端模型和本機模型的標籤人員
反之。
Swift
var options: AutoMLImageLabelerOptions! if (ModelManager.modelManager().isModelDownloaded(remoteModel)) { options = AutoMLImageLabelerOptions(remoteModel: remoteModel) } else { options = AutoMLImageLabelerOptions(localModel: localModel) } options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Firebase console // to determine an appropriate value. let imageLabeler = ImageLabeler.imageLabeler(options: options)
Objective-C
MLKAutoMLImageLabelerOptions *options; if ([[MLKModelManager modelManager] isModelDownloaded:remoteModel]) { options = [[MLKAutoMLImageLabelerOptions alloc] initWithRemoteModel:remoteModel]; } else { options = [[MLKAutoMLImageLabelerOptions alloc] initWithLocalModel:localModel]; } options.confidenceThreshold = @(0.0); // Evaluate your model in the Firebase console // to determine an appropriate value. MLKImageLabeler *imageLabeler = [MLKImageLabeler imageLabelerWithOptions:options];
如果只有遠端託管的模型,請停用模型相關 功能,例如顯示為灰色或隱藏部分 UI,直到 您確認模型已下載完成
您可以將觀察器附加至預設值,取得模型下載狀態
通知中心。請務必在觀察器中對 self
使用較弱的參照
因此,下載作業可能需要一些時間,而且原始物件可
下載完成後就會釋出空間。例如:
Swift
NotificationCenter.default.addObserver( forName: .mlkitModelDownloadDidSucceed, object: nil, queue: nil ) { [weak self] notification in guard let strongSelf = self, let userInfo = notification.userInfo, let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue] as? RemoteModel, model.name == "your_remote_model" else { return } // The model was downloaded and is available on the device } NotificationCenter.default.addObserver( forName: .mlkitModelDownloadDidFail, object: nil, queue: nil ) { [weak self] notification in guard let strongSelf = self, let userInfo = notification.userInfo, let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue] as? RemoteModel else { return } let error = userInfo[ModelDownloadUserInfoKey.error.rawValue] // ... }
Objective-C
__weak typeof(self) weakSelf = self; [NSNotificationCenter.defaultCenter addObserverForName:MLKModelDownloadDidSucceedNotification object:nil queue:nil usingBlock:^(NSNotification *_Nonnull note) { if (weakSelf == nil | note.userInfo == nil) { return; } __strong typeof(self) strongSelf = weakSelf; MLKRemoteModel *model = note.userInfo[MLKModelDownloadUserInfoKeyRemoteModel]; if ([model.name isEqualToString:@"your_remote_model"]) { // The model was downloaded and is available on the device } }]; [NSNotificationCenter.defaultCenter addObserverForName:MLKModelDownloadDidFailNotification object:nil queue:nil usingBlock:^(NSNotification *_Nonnull note) { if (weakSelf == nil | note.userInfo == nil) { return; } __strong typeof(self) strongSelf = weakSelf; NSError *error = note.userInfo[MLKModelDownloadUserInfoKeyError]; }];
2. 準備輸入圖片
使用 UIImage
或VisionImage
CMSampleBuffer
。
如果您使用 UIImage
,請按照下列步驟操作:
- 使用
UIImage
建立VisionImage
物件。請務必指定正確的.orientation
。Swift
let image = VisionImage(image: UIImage) visionImage.orientation = image.imageOrientation
Objective-C
MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image]; visionImage.orientation = image.imageOrientation;
如果您使用 CMSampleBuffer
,請按照下列步驟操作:
-
指定
CMSampleBuffer
。如何取得圖片方向:
Swift
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> UIImage.Orientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftMirrored : .right case .landscapeLeft: return cameraPosition == .front ? .downMirrored : .up case .portraitUpsideDown: return cameraPosition == .front ? .rightMirrored : .left case .landscapeRight: return cameraPosition == .front ? .upMirrored : .down case .faceDown, .faceUp, .unknown: return .up } }
Objective-C
- (UIImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored : UIImageOrientationRight; case UIDeviceOrientationLandscapeLeft: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored : UIImageOrientationUp; case UIDeviceOrientationPortraitUpsideDown: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored : UIImageOrientationLeft; case UIDeviceOrientationLandscapeRight: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored : UIImageOrientationDown; case UIDeviceOrientationUnknown: case UIDeviceOrientationFaceUp: case UIDeviceOrientationFaceDown: return UIImageOrientationUp; } }
- 使用
VisionImage
CMSampleBuffer
物件和方向:Swift
let image = VisionImage(buffer: sampleBuffer) image.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition)
Objective-C
MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer]; image.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
3. 執行映像檔標籤工具
非同步:
Swift
imageLabeler.process(image) { labels, error in guard error == nil, let labels = labels, !labels.isEmpty else { // Handle the error. return } // Show results. }
Objective-C
[imageLabeler processImage:image completion:^(NSArray*_Nullable labels, NSError *_Nullable error) { if (labels.count == 0) { // Handle the error. return; } // Show results. }];
同步:
Swift
var labels: [ImageLabel] do { labels = try imageLabeler.results(in: image) } catch let error { // Handle the error. return } // Show results.
Objective-C
NSError *error; NSArray*labels = [imageLabeler resultsInImage:image error:&error]; // Show results or handle the error.
4. 取得加上標籤的物件相關資訊
如果圖片標籤作業成功,則會傳回ImageLabel
。每個 ImageLabel
都代表
映像檔和映像檔版本您可以取得每個標籤的文字說明 (如果可以使用
TensorFlow Lite 模型檔案的中繼資料)、可信度分數和索引。
例如:Swift
for label in labels { let labelText = label.text let confidence = label.confidence let index = label.index }
Objective-C
for (MLKImageLabel *label in labels) { NSString *labelText = label.text; float confidence = label.confidence; NSInteger index = label.index; }
即時效能改善訣竅
如要在即時應用程式中為圖片加上標籤,請按照下列步驟操作: 實現最佳影格速率:
- 如要處理影片影格,請使用偵測工具的
results(in:)
同步 API。致電 透過AVCaptureVideoDataOutputSampleBufferDelegate
的captureOutput(_, didOutput:from:)
函式,以同步方式取得指定影片的結果 相框。保留AVCaptureVideoDataOutput
的alwaysDiscardsLateVideoFrames
做為true
,以限制對偵測工具的呼叫。如果是 影格的畫面,就會遭到捨棄。 - 如果使用偵測工具的輸出內容將圖像重疊 先從 ML Kit 取得結果,然後算繪圖片 並疊加單一步驟這麼一來,您的應用程式就會算繪到顯示途徑 每個處理的輸入影格只會產生一次請參閱 updatePreviewOverlayViewWithLastFrame 也可以查看一個範例