एमएल किट का इस्तेमाल, किसी इमेज में मौजूद इकाइयों को पहचानने और उन्हें लेबल करने के लिए किया जा सकता है. यह एपीआई, पसंद के मुताबिक बनाए गए इमेज क्लासिफ़िकेशन मॉडल की कई रेंज के साथ काम करता है. प्लीज़ इसके बारे में दिशा-निर्देश पाने के लिए, एमएल किट वाले कस्टम मॉडल देखें मॉडल के साथ काम करने से जुड़ी ज़रूरी शर्तें, पहले से ट्रेनिंग किए गए मॉडल कहां मिलेंगे, साथ ही, अपने मॉडल को ट्रेनिंग देने का तरीक़ा बताया गया है.
इमेज लेबल को कस्टम मॉडल के साथ जोड़ने के दो तरीके हैं: बंडल करके पाइपलाइन को अपने ऐप्लिकेशन के हिस्से के तौर पर चुनें या किसी बंडल न किए गए पाइपलाइन का इस्तेमाल करें, जो Google Play services पर जाएं. अगर आपने बंडल न की गई पाइपलाइन को चुना है, तो आपका ऐप्लिकेशन छोटा. विवरण के लिए नीचे दी गई तालिका देखें.
बंडल किए गए | अनबंडल किए गए | |
---|---|---|
लाइब्रेरी का नाम | com.google.mlkit:image-labeling-custom | com.google.android.gms:play-services-mlkit-image-labeling-custom |
लागू करना | बिल्ड के दौरान, पाइपलाइन आपके ऐप्लिकेशन से स्टैटिक रूप से लिंक होती है. | Pipeline को Google Play services की मदद से डाइनैमिक तौर पर डाउनलोड किया जाता है. |
ऐप्लिकेशन का साइज़ | साइज़ करीब 3.8 एमबी बढ़ जाएगा. | साइज़ करीब 200 केबी बढ़ जाता है. |
प्रोसेस शुरू होने का समय | पाइपलाइन की सुविधा तुरंत उपलब्ध है. | पहली बार इस्तेमाल करने से पहले, पाइपलाइन के डाउनलोड होने तक इंतज़ार करना पड़ सकता है. |
एपीआई लाइफ़साइकल स्टेज | सामान्य रूप से उपलब्ध (GA) | बीटा |
कस्टम मॉडल को इंटिग्रेट करने के दो तरीके हैं: मॉडल को इसके हिसाब से बंडल करें उसे अपने ऐप्लिकेशन के ऐसेट फ़ोल्डर में रखना या डाइनैमिक तौर पर डाउनलोड करना को Firebase से हटाएं. नीचे दी गई टेबल में इन दोनों विकल्पों की तुलना की गई है.
बंडल किया गया मॉडल | होस्ट किया गया मॉडल |
---|---|
मॉडल आपके ऐप्लिकेशन के APK का हिस्सा होता है, जो इसका साइज़ बढ़ाता है. | मॉडल आपके APK का हिस्सा नहीं है. इसे यहां अपलोड करके होस्ट किया जाता है Firebase मशीन लर्निंग. |
Android डिवाइस के ऑफ़लाइन होने पर भी, मॉडल तुरंत उपलब्ध हो जाता है | मॉडल को मांग पर डाउनलोड किया जाता है |
Firebase प्रोजेक्ट की ज़रूरत नहीं होती है | Firebase प्रोजेक्ट होना ज़रूरी है |
मॉडल को अपडेट करने के लिए, आपको अपने ऐप्लिकेशन को फिर से पब्लिश करना होगा | अपने ऐप्लिकेशन को फिर से पब्लिश किए बिना, मॉडल के अपडेट पुश करें |
पहले से कोई A/B टेस्टिंग नहीं है | Firebase रिमोट कॉन्फ़िगरेशन की मदद से आसान A/B टेस्टिंग |
इसे आज़माएं
- विज़न क्विकस्टार्ट ऐप्लिकेशन देखें उदाहरण के लिए, बंडल किए गए मॉडल और automl क्विकस्टार्ट ऐप्लिकेशन होस्ट किए गए मॉडल के इस्तेमाल का उदाहरण.
शुरू करने से पहले
अपनी प्रोजेक्ट-लेवल की
build.gradle
फ़ाइल में, यह पक्का करें कि आपकेbuildscript
और, दोनों में Google की Maven रिपॉज़िटरीallprojects
सेक्शन.अपने मॉड्यूल में ML Kit Android लाइब्रेरी के लिए डिपेंडेंसी जोड़ें ऐप्लिकेशन लेवल की Gradle फ़ाइल होती है, जो आम तौर पर
app/build.gradle
होती है. इनमें से कोई एक चुनें आपकी ज़रूरतों के हिसाब से नीचे दी गई चीज़ों की जानकारी देती हैं:अपने ऐप्लिकेशन के साथ पाइपलाइन को बंडल करने के लिए:
dependencies { // ... // Use this dependency to bundle the pipeline with your app implementation 'com.google.mlkit:image-labeling-custom:17.0.3' }
Google Play Services में पाइपलाइन का इस्तेमाल करने के लिए:
dependencies { // ... // Use this dependency to use the dynamically downloaded pipeline in Google Play Services implementation 'com.google.android.gms:play-services-mlkit-image-labeling-custom:16.0.0-beta5' }
अगर आपको Google Play Services में पाइपलाइन का इस्तेमाल करना है, तो इसके बाद अपने ऐप्लिकेशन को डिवाइस पर अपने-आप डाउनलोड करने के लिए कॉन्फ़िगर करें आपका ऐप्लिकेशन Play Store से इंस्टॉल किया गया हो. ऐसा करने के लिए, यह जानकारी जोड़ें आपके ऐप्लिकेशन की
AndroidManifest.xml
फ़ाइल का एलान:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="custom_ica" /> <!-- To use multiple downloads: android:value="custom_ica,download2,download3" --> </application>
पाइपलाइन की उपलब्धता की जांच की जा सकती है और इसके ज़रिए डाउनलोड करने का अनुरोध भी किया जा सकता है Google Play services ModuleInstallClient API.
अगर इंस्टॉल के समय पाइपलाइन डाउनलोड करने की सुविधा चालू नहीं की जाती या अश्लील डाउनलोड का अनुरोध नहीं किया जाता, पहली बार लेबलर चलाने पर, पाइपलाइन डाउनलोड हो जाती है. आपके अनुरोध डाउनलोड पूरा होने से पहले ही कोई नतीजा न मिले.
डाइनैमिक तौर पर डाउनलोड करने के लिए,
linkFirebase
डिपेंडेंसी जोड़ें Firebase से मिला मॉडल:Firebase से मॉडल को डाइनैमिक तौर पर डाउनलोड करने के लिए,
linkFirebase
जोड़ें निर्भरता:dependencies { // ... // Image labeling feature with model downloaded from Firebase implementation 'com.google.mlkit:image-labeling-custom:17.0.3' // Or use the dynamically downloaded pipeline in Google Play Services // implementation 'com.google.android.gms:play-services-mlkit-image-labeling-custom:16.0.0-beta5' implementation 'com.google.mlkit:linkfirebase:17.0.0' }
अगर आपको कोई मॉडल डाउनलोड करना है, तो पक्का करें कि अपने Android प्रोजेक्ट में Firebase जोड़ना, अगर आपने पहले से ऐसा नहीं किया है. मॉडल को बंडल करते समय, इसकी ज़रूरत नहीं होती.
1. मॉडल लोड करें
लोकल मॉडल सोर्स कॉन्फ़िगर करना
मॉडल को अपने ऐप्लिकेशन के साथ बंडल करने के लिए:
अपने ऐप्लिकेशन की मॉडल फ़ाइल (आम तौर पर,
.tflite
या.lite
पर खत्म होने वाली) कॉपी करेंassets/
फ़ोल्डर. (आपको पहले फ़ोल्डर बनाना पड़ सकता हैapp/
फ़ोल्डर पर राइट-क्लिक करें, फिर नया > फ़ोल्डर > ऐसेट फ़ोल्डर.)इसके बाद, यह पक्का करने के लिए कि अपने ऐप्लिकेशन की
build.gradle
फ़ाइल में ये चीज़ें जोड़ें ऐप्लिकेशन बनाते समय, Gradle, मॉडल फ़ाइल को कंप्रेस नहीं करता:android { // ... aaptOptions { noCompress "tflite" // or noCompress "lite" } }
मॉडल फ़ाइल, ऐप्लिकेशन के पैकेज में शामिल की जाएगी और ML किट में उपलब्ध होगी रॉ ऐसेट के तौर पर काम करता है.
मॉडल फ़ाइल का पाथ बताते हुए
LocalModel
ऑब्जेक्ट बनाएं:Kotlin
val localModel = LocalModel.Builder() .setAssetFilePath("model.tflite") // or .setAbsoluteFilePath(absolute file path to model file) // or .setUri(URI to model file) .build()
Java
LocalModel localModel = new LocalModel.Builder() .setAssetFilePath("model.tflite") // or .setAbsoluteFilePath(absolute file path to model file) // or .setUri(URI to model file) .build();
Firebase से होस्ट किए गए मॉडल सोर्स को कॉन्फ़िगर करना
रिमोट तरीके से होस्ट किए गए मॉडल का इस्तेमाल करने के लिए, इसके हिसाब से RemoteModel
ऑब्जेक्ट बनाएं
FirebaseModelSource
, उस नाम के बारे में बताता है जिसे आपने मॉडल को असाइन किया था.
इसे प्रकाशित किया:
Kotlin
// Specify the name you assigned in the Firebase console. val remoteModel = CustomRemoteModel .Builder(FirebaseModelSource.Builder("your_model_name").build()) .build()
Java
// Specify the name you assigned in the Firebase console. CustomRemoteModel remoteModel = new CustomRemoteModel .Builder(new FirebaseModelSource.Builder("your_model_name").build()) .build();
इसके बाद, उन शर्तों को तय करते हुए मॉडल डाउनलोड टास्क शुरू करें को डाउनलोड करने की अनुमति देनी है. अगर मॉडल डिवाइस पर नहीं है या नया डिवाइस है, तो मॉडल का वर्शन उपलब्ध है, तो टास्क एसिंक्रोनस रूप से Firebase से मिला मॉडल:
Kotlin
val downloadConditions = DownloadConditions.Builder() .requireWifi() .build() RemoteModelManager.getInstance().download(remoteModel, downloadConditions) .addOnSuccessListener { // Success. }
Java
DownloadConditions downloadConditions = new DownloadConditions.Builder() .requireWifi() .build(); RemoteModelManager.getInstance().download(remoteModel, downloadConditions) .addOnSuccessListener(new OnSuccessListener() { @Override public void onSuccess(@NonNull Task task) { // Success. } });
कई ऐप्लिकेशन अपने इनिशलाइज़ेशन कोड में डाउनलोड का काम शुरू करते हैं, लेकिन आपके द्वारा मॉडल का उपयोग करने की आवश्यकता से पहले किसी भी समय ऐसा कर सकते है.
इमेज लेबल करने की सेटिंग को कॉन्फ़िगर करें
अपने मॉडल सोर्स को कॉन्फ़िगर करने के बाद, इनसे ImageLabeler
ऑब्जेक्ट बनाएं
उनमें से एक है.
ये विकल्प उपलब्ध हैं:
विकल्प | |
---|---|
confidenceThreshold
|
पता लगाए गए लेबल का कम से कम कॉन्फ़िडेंस स्कोर. अगर यह नीति सेट नहीं है, तो किसी भी मॉडल के मेटाडेटा से तय किया गया क्लासिफ़ायर थ्रेशोल्ड इस्तेमाल किया जाएगा. अगर मॉडल में कोई मेटाडेटा नहीं है या मेटाडेटा में डेटा की कैटगरी तय करने वाले थ्रेशोल्ड को तय करें, तो डिफ़ॉल्ट थ्रेशोल्ड 0.0 होगा इस्तेमाल किया गया. |
maxResultCount
|
लौटाए जाने वाले लेबल की ज़्यादा से ज़्यादा संख्या. अगर यह सेट नहीं है, तो 10 का इस्तेमाल किया जाएगा. |
अगर आपके पास केवल स्थानीय रूप से बंडल किया गया मॉडल है, तो बस अपने
LocalModel
ऑब्जेक्ट:
Kotlin
val customImageLabelerOptions = CustomImageLabelerOptions.Builder(localModel) .setConfidenceThreshold(0.5f) .setMaxResultCount(5) .build() val labeler = ImageLabeling.getClient(customImageLabelerOptions)
Java
CustomImageLabelerOptions customImageLabelerOptions = new CustomImageLabelerOptions.Builder(localModel) .setConfidenceThreshold(0.5f) .setMaxResultCount(5) .build(); ImageLabeler labeler = ImageLabeling.getClient(customImageLabelerOptions);
अगर आपके पास रिमोट तौर पर होस्ट किया गया मॉडल है, तो आपको यह देखना होगा कि
डाउनलोड करने की सुविधा देता है. मॉडल के डाउनलोड होने की स्थिति देखी जा सकती है
टास्क बनाने के लिए, मॉडल मैनेजर के isModelDownloaded()
तरीके का इस्तेमाल करें.
हालांकि, लेबलर को चलाने से पहले आपको इसकी पुष्टि करनी होगी, अगर रिमोट तौर पर होस्ट किया गया मॉडल और लोकल-बंडल्ड मॉडल, दोनों होने चाहिए, तो इससे इमेज लेबलर को इंस्टैंशिएट करते समय यह चेक करने का तरीका सीखें: किसी अगर लेबलर को रिमोट मॉडल से डाउनलोड किया गया है, तो वह नहीं करते हैं.
Kotlin
RemoteModelManager.getInstance().isModelDownloaded(remoteModel) .addOnSuccessListener { isDownloaded -> val optionsBuilder = if (isDownloaded) { CustomImageLabelerOptions.Builder(remoteModel) } else { CustomImageLabelerOptions.Builder(localModel) } val options = optionsBuilder .setConfidenceThreshold(0.5f) .setMaxResultCount(5) .build() val labeler = ImageLabeling.getClient(options) }
Java
RemoteModelManager.getInstance().isModelDownloaded(remoteModel) .addOnSuccessListener(new OnSuccessListener() { @Override public void onSuccess(Boolean isDownloaded) { CustomImageLabelerOptions.Builder optionsBuilder; if (isDownloaded) { optionsBuilder = new CustomImageLabelerOptions.Builder(remoteModel); } else { optionsBuilder = new CustomImageLabelerOptions.Builder(localModel); } CustomImageLabelerOptions options = optionsBuilder .setConfidenceThreshold(0.5f) .setMaxResultCount(5) .build(); ImageLabeler labeler = ImageLabeling.getClient(options); } });
अगर आपके पास सिर्फ़ रिमोट तौर पर होस्ट किया गया मॉडल है, तो आपको मॉडल से जुड़ी सेटिंग बंद करनी चाहिए
सुविधा—उदाहरण के लिए, आपके यूज़र इंटरफ़ेस (यूआई) के किसी हिस्से को धूसर करना या छिपाना—जब तक
तो यह पुष्टि की जाती है कि मॉडल डाउनलोड किया गया है. लिसनर को अटैच करके ऐसा किया जा सकता है
मॉडल मैनेजर की download()
विधि में:
Kotlin
RemoteModelManager.getInstance().download(remoteModel, conditions) .addOnSuccessListener { // Download complete. Depending on your app, you could enable the ML // feature, or switch from the local model to the remote model, etc. }
Java
RemoteModelManager.getInstance().download(remoteModel, conditions) .addOnSuccessListener(new OnSuccessListener() { @Override public void onSuccess(Void v) { // Download complete. Depending on your app, you could enable // the ML feature, or switch from the local model to the remote // model, etc. } });
2. इनपुट इमेज तैयार करें
इसके बाद, हर उस इमेज के लिएInputImage
बनाएं जिसे आप लेबल करना चाहते हैं
हटाने की ज़रूरत नहीं है. Bitmap
का इस्तेमाल करने पर, इमेज लेबल करने वाला टूल तेज़ी से काम करता है
या अगर कैमरा2 एपीआई का इस्तेमाल किया जा रहा है, तो YUV_420_888 media.Image
, जो
हमारा सुझाव है कि जब भी संभव हो.
एक InputImage
बनाया जा सकता है
अलग-अलग सोर्स के ऑब्जेक्ट के बारे में बताया गया है. हर ऑब्जेक्ट के बारे में नीचे बताया गया है.
media.Image
का इस्तेमाल करके
InputImage
बनाने के लिए
किसी media.Image
ऑब्जेक्ट से लिया गया ऑब्जेक्ट, जैसे कि जब आप किसी ऑब्जेक्ट से इमेज कैप्चर करते हैं
फ़ोन का कैमरा इस्तेमाल करें, तो media.Image
ऑब्जेक्ट को पास करें और इमेज के
InputImage.fromMediaImage()
का रोटेशन.
अगर आपको
CameraX लाइब्रेरी, OnImageCapturedListener
, और
ImageAnalysis.Analyzer
क्लास, रोटेशन वैल्यू को कैलकुलेट करती हैं
आपके लिए.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
अगर इमेज का रोटेशन डिग्री देने वाली कैमरा लाइब्रेरी का इस्तेमाल नहीं किया जाता, तो डिवाइस की रोटेशन डिग्री और कैमरे के ओरिएंटेशन से इसका हिसाब लगा सकता है डिवाइस में सेंसर:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
इसके बाद, media.Image
ऑब्जेक्ट को पास करें और
InputImage.fromMediaImage()
डिग्री पर घुमाव:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
फ़ाइल यूआरआई का इस्तेमाल करना
InputImage
बनाने के लिए
किसी फ़ाइल यूआरआई से ऑब्जेक्ट को जोड़ने के लिए, ऐप्लिकेशन संदर्भ और फ़ाइल यूआरआई को
InputImage.fromFilePath()
. यह तब काम आता है, जब
उपयोगकर्ता को चुनने का प्रॉम्प्ट भेजने के लिए, ACTION_GET_CONTENT
इंटेंट का इस्तेमाल करें
अपने गैलरी ऐप्लिकेशन से मिली इमेज शामिल करेगा.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
ByteBuffer
या ByteArray
का इस्तेमाल करना
InputImage
बनाने के लिए
ByteBuffer
या ByteArray
से लिया गया ऑब्जेक्ट है, तो पहले इमेज की गणना करें
media.Image
इनपुट के लिए पहले बताई गई रोटेशन डिग्री.
इसके बाद, इमेज के साथ बफ़र या अरे का इस्तेमाल करके, InputImage
ऑब्जेक्ट बनाएं
ऊंचाई, चौड़ाई, कलर एन्कोडिंग फ़ॉर्मैट, और रोटेशन डिग्री:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Bitmap
का इस्तेमाल करके
InputImage
बनाने के लिए
Bitmap
ऑब्जेक्ट में बनाए गए ऑब्जेक्ट के लिए, यह एलान करें:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
इमेज को Bitmap
ऑब्जेक्ट से, रोटेशन डिग्री के साथ दिखाया गया है.
3. इमेज लेबलर चलाएं
किसी इमेज में ऑब्जेक्ट को लेबल करने के लिए, image
ऑब्जेक्ट को ImageLabeler
के
process()
तरीका.
Kotlin
labeler.process(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
labeler.process(image) .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() { @Override public void onSuccess(List<ImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. लेबल की गई इकाइयों के बारे में जानकारी पाएं
अगर इमेज को लेबल करने की कार्रवाई पूरी हो जाती है, तो आपकोImageLabel
की सूची दिखेगी
ऑब्जेक्ट, सक्सेस लिसनर को पास किया जाता है. हर ImageLabel
ऑब्जेक्ट, इमेज में लेबल की गई किसी चीज़ को दिखाता है. आप हर लेबल का टेक्स्ट पा सकते हैं
ब्यौरा (अगर TensorFlow Lite मॉडल की फ़ाइल के मेटाडेटा में उपलब्ध है), कॉन्फ़िडेंस स्कोर, और इंडेक्स. उदाहरण के लिए:
Kotlin
for (label in labels) { val text = label.text val confidence = label.confidence val index = label.index }
Java
for (ImageLabel label : labels) { String text = label.getText(); float confidence = label.getConfidence(); int index = label.getIndex(); }
रीयल-टाइम परफ़ॉर्मेंस को बेहतर बनाने के लिए सलाह
अगर आपको रीयल-टाइम ऐप्लिकेशन में इमेज को लेबल करना है, तो इन निर्देशों का पालन करें सबसे सही फ़्रेम रेट हासिल करने के लिए दिशा-निर्देश:
- अगर आपको
Camera
याcamera2
एपीआई, इमेज लेबलर को कॉल थ्रॉटल करें. अगर किसी नए वीडियो पर इमेज लेबलर के चलने के दौरान फ़्रेम उपलब्ध हो जाता है, फ़्रेम छोड़ दें. ज़्यादा जानकारी के लिए, उदाहरण के लिए, क्विकस्टार्ट सैंपल ऐप्लिकेशन मेंVisionProcessorBase
क्लास. - अगर
CameraX
एपीआई का इस्तेमाल किया जाता है, तो पक्का करें कि बैक प्रेशर स्ट्रेटजी अपनी डिफ़ॉल्ट वैल्यू पर सेट हैImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
. इससे यह गारंटी मिलती है कि विश्लेषण के लिए एक बार में सिर्फ़ एक इमेज डिलीवर की जाएगी. अगर और इमेज जब एनालाइज़र व्यस्त होता है, तो उसे जनरेट कर दिया जाता है. उसे अपने-आप हटा दिया जाता है. डिलीवरी. जिस इमेज की जांच की जा रही है उसे बंद करने के लिए, इस नंबर पर कॉल करें Imageप्रॉक्सी.close(), अगली सबसे नई इमेज डिलीवर की जाएगी. - अगर ग्राफ़िक ओवरले करने के लिए, इमेज लेबलर के आउटपुट का इस्तेमाल किया जाता है
इनपुट इमेज को चुनने के बाद, पहले एमएल किट से नतीजा पाएं. इसके बाद, इमेज को रेंडर करें
और ओवरले को एक ही चरण में पूरा करें. यह डिसप्ले की सतह पर रेंडर हो जाता है
हर इनपुट फ़्रेम के लिए सिर्फ़ एक बार. ज़्यादा जानकारी के लिए,
CameraSourcePreview
और उदाहरण के लिए, क्विकस्टार्ट सैंपल ऐप्लिकेशन मेंGraphicOverlay
क्लास. - Camera2 API का इस्तेमाल करने पर, इमेज यहां कैप्चर करें
ImageFormat.YUV_420_888
फ़ॉर्मैट. अगर पुराने Camera API का इस्तेमाल किया जा रहा है, तो इमेज यहां कैप्चर करेंImageFormat.NV21
फ़ॉर्मैट.