Помечайте изображения с помощью пользовательской модели на iOS

Вы можете использовать ML Kit, чтобы распознавать объекты на изображении и маркировать их. Этот API поддерживает широкий спектр пользовательских моделей классификации изображений. Обратитесь к разделу Пользовательские модели с комплектом ML для получения инструкций по требованиям совместимости моделей, где найти предварительно обученные модели и как обучать собственные модели.

Существует два способа интеграции пользовательской модели. Вы можете связать модель, поместив ее в папку ресурсов вашего приложения, или динамически загрузить ее из Firebase. В следующей таблице сравниваются два варианта.

Модель в комплекте Размещенная модель
Модель является частью APK-файла вашего приложения, что увеличивает его размер. Модель не является частью вашего APK. Он размещается путем загрузки в Firebase Machine Learning .
Модель доступна сразу, даже когда Android-устройство находится в автономном режиме. Модель скачивается по запросу.
Нет необходимости в проекте Firebase Требуется проект Firebase
Вам необходимо повторно опубликовать свое приложение, чтобы обновить модель. Отправляйте обновления модели без повторной публикации приложения.
Нет встроенного A/B-тестирования. Простое A/B-тестирование с помощью Firebase Remote Config

Попробуйте это

Прежде чем начать

  1. Включите библиотеки ML Kit в свой подфайл:

    Для объединения модели с вашим приложением:

    pod 'GoogleMLKit/ImageLabelingCustom', '15.5.0'
    

    Для динамической загрузки модели из Firebase добавьте зависимость LinkFirebase :

    pod 'GoogleMLKit/ImageLabelingCustom', '15.5.0'
    pod 'GoogleMLKit/LinkFirebase', '15.5.0'
    
  2. После установки или обновления модулей вашего проекта откройте проект Xcode, используя его .xcworkspace . ML Kit поддерживается в Xcode версии 13.2.1 или выше.

  3. Если вы хотите загрузить модель , обязательно добавьте Firebase в свой проект iOS , если вы еще этого не сделали. Это не требуется при объединении модели.

1. Загрузите модель

Настройте источник локальной модели

Чтобы связать модель с вашим приложением:

  1. Скопируйте файл модели (обычно заканчивающийся на .tflite или .lite ) в свой проект Xcode, при этом не забывая выбирать Copy bundle resources . Файл модели будет включен в пакет приложения и доступен в ML Kit.

  2. Создайте объект LocalModel , указав путь к файлу модели:

    Быстрый

    let localModel = LocalModel(path: localModelFilePath)

    Цель-C

    MLKLocalModel *localModel =
        [[MLKLocalModel alloc] initWithPath:localModelFilePath];

Настройте источник модели, размещенный в Firebase

Чтобы использовать удаленно размещенную модель, создайте объект RemoteModel , указав имя, которое вы присвоили модели при ее публикации:

Быстрый

let firebaseModelSource = FirebaseModelSource(
    name: "your_remote_model") // The name you assigned in
                               // the Firebase console.
let remoteModel = CustomRemoteModel(remoteModelSource: firebaseModelSource)

Цель-C

MLKFirebaseModelSource *firebaseModelSource =
    [[MLKFirebaseModelSource alloc]
        initWithName:@"your_remote_model"]; // The name you assigned in
                                            // the Firebase console.
MLKCustomRemoteModel *remoteModel =
    [[MLKCustomRemoteModel alloc]
        initWithRemoteModelSource:firebaseModelSource];

Затем запустите задачу загрузки модели, указав условия, при которых вы хотите разрешить загрузку. Если модели нет на устройстве или доступна более новая версия модели, задача асинхронно загрузит модель из Firebase:

Быстрый

let downloadConditions = ModelDownloadConditions(
  allowsCellularAccess: true,
  allowsBackgroundDownloading: true
)

let downloadProgress = ModelManager.modelManager().download(
  remoteModel,
  conditions: downloadConditions
)

Цель-C

MLKModelDownloadConditions *downloadConditions =
    [[MLKModelDownloadConditions alloc] initWithAllowsCellularAccess:YES
                                         allowsBackgroundDownloading:YES];

NSProgress *downloadProgress =
    [[MLKModelManager modelManager] downloadModel:remoteModel
                                       conditions:downloadConditions];

Многие приложения запускают задачу загрузки в своем коде инициализации, но вы можете сделать это в любой момент, прежде чем вам понадобится использовать модель.

Настройка маркировщика изображений

После настройки источников модели создайте объект ImageLabeler на основе одного из них.

Доступны следующие варианты:

Параметры
confidenceThreshold

Минимальный показатель достоверности обнаруженных меток. Если не установлено, будет использоваться любое пороговое значение классификатора, указанное в метаданных модели. Если модель не содержит метаданных или в метаданных не указан порог классификатора, будет использоваться порог по умолчанию, равный 0,0.

maxResultCount

Максимальное количество возвращаемых меток. Если не установлено, будет использоваться значение по умолчанию 10.

Если у вас есть только локально связанная модель, просто создайте метку из вашего объекта LocalModel :

Быстрый

let options = CustomImageLabelerOptions(localModel: localModel)
options.confidenceThreshold = NSNumber(value: 0.0)
let imageLabeler = ImageLabeler.imageLabeler(options: options)

Цель-C

MLKCustomImageLabelerOptions *options =
    [[MLKCustomImageLabelerOptions alloc] initWithLocalModel:localModel];
options.confidenceThreshold = @(0.0);
MLKImageLabeler *imageLabeler =
    [MLKImageLabeler imageLabelerWithOptions:options];

Если у вас есть удаленно размещенная модель, вам придется убедиться, что она загружена, прежде чем запускать ее. Вы можете проверить состояние задачи загрузки модели с помощью метода isModelDownloaded(remoteModel:) менеджера моделей.

Хотя вам нужно подтвердить это только перед запуском средства разметки, если у вас есть как удаленно размещенная модель, так и локально связанная модель, возможно, имеет смысл выполнить эту проверку при создании экземпляра ImageLabeler : создайте средство разметки из удаленной модели, если оно скачано, а из локальной модели иначе.

Быстрый

var options: CustomImageLabelerOptions!
if (ModelManager.modelManager().isModelDownloaded(remoteModel)) {
  options = CustomImageLabelerOptions(remoteModel: remoteModel)
} else {
  options = CustomImageLabelerOptions(localModel: localModel)
}
options.confidenceThreshold = NSNumber(value: 0.0)
let imageLabeler = ImageLabeler.imageLabeler(options: options)

Цель-C

MLKCustomImageLabelerOptions *options;
if ([[MLKModelManager modelManager] isModelDownloaded:remoteModel]) {
  options = [[MLKCustomImageLabelerOptions alloc] initWithRemoteModel:remoteModel];
} else {
  options = [[MLKCustomImageLabelerOptions alloc] initWithLocalModel:localModel];
}
options.confidenceThreshold = @(0.0);
MLKImageLabeler *imageLabeler =
    [MLKImageLabeler imageLabelerWithOptions:options];

Если у вас есть только удаленно размещенная модель, вам следует отключить функции, связанные с моделью (например, сделать их серыми или скрыть часть пользовательского интерфейса), пока вы не подтвердите, что модель загружена.

Вы можете получить статус загрузки модели, присоединив наблюдателей к Центру уведомлений по умолчанию. Обязательно используйте слабую ссылку на self в блоке наблюдателя, поскольку загрузка может занять некоторое время, а исходный объект может быть освобожден к моменту завершения загрузки. Например:

Быстрый

NotificationCenter.default.addObserver(
    forName: .mlkitModelDownloadDidSucceed,
    object: nil,
    queue: nil
) { [weak self] notification in
    guard let strongSelf = self,
        let userInfo = notification.userInfo,
        let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
            as? RemoteModel,
        model.name == "your_remote_model"
        else { return }
    // The model was downloaded and is available on the device
}

NotificationCenter.default.addObserver(
    forName: .mlkitModelDownloadDidFail,
    object: nil,
    queue: nil
) { [weak self] notification in
    guard let strongSelf = self,
        let userInfo = notification.userInfo,
        let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
            as? RemoteModel
        else { return }
    let error = userInfo[ModelDownloadUserInfoKey.error.rawValue]
    // ...
}

Цель-C

__weak typeof(self) weakSelf = self;

[NSNotificationCenter.defaultCenter
    addObserverForName:MLKModelDownloadDidSucceedNotification
                object:nil
                 queue:nil
            usingBlock:^(NSNotification *_Nonnull note) {
              if (weakSelf == nil | note.userInfo == nil) {
                return;
              }
              __strong typeof(self) strongSelf = weakSelf;

              MLKRemoteModel *model = note.userInfo[MLKModelDownloadUserInfoKeyRemoteModel];
              if ([model.name isEqualToString:@"your_remote_model"]) {
                // The model was downloaded and is available on the device
              }
            }];

[NSNotificationCenter.defaultCenter
    addObserverForName:MLKModelDownloadDidFailNotification
                object:nil
                 queue:nil
            usingBlock:^(NSNotification *_Nonnull note) {
              if (weakSelf == nil | note.userInfo == nil) {
                return;
              }
              __strong typeof(self) strongSelf = weakSelf;

              NSError *error = note.userInfo[MLKModelDownloadUserInfoKeyError];
            }];

2. Подготовьте входное изображение

Создайте объект VisionImage используя UIImage или CMSampleBuffer .

Если вы используете UIImage , выполните следующие действия:

  • Создайте объект VisionImage с помощью UIImage . Обязательно укажите правильную .orientation .

    Быстрый

    let image = VisionImage(image: UIImage)
    visionImage.orientation = image.imageOrientation

    Цель-C

    MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image];
    visionImage.orientation = image.imageOrientation;

Если вы используете CMSampleBuffer , выполните следующие действия:

  • Укажите ориентацию данных изображения, содержащихся в CMSampleBuffer .

    Чтобы получить ориентацию изображения:

    Быстрый

    func imageOrientation(
      deviceOrientation: UIDeviceOrientation,
      cameraPosition: AVCaptureDevice.Position
    ) -> UIImage.Orientation {
      switch deviceOrientation {
      case .portrait:
        return cameraPosition == .front ? .leftMirrored : .right
      case .landscapeLeft:
        return cameraPosition == .front ? .downMirrored : .up
      case .portraitUpsideDown:
        return cameraPosition == .front ? .rightMirrored : .left
      case .landscapeRight:
        return cameraPosition == .front ? .upMirrored : .down
      case .faceDown, .faceUp, .unknown:
        return .up
      }
    }
          

    Цель-C

    - (UIImageOrientation)
      imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                             cameraPosition:(AVCaptureDevicePosition)cameraPosition {
      switch (deviceOrientation) {
        case UIDeviceOrientationPortrait:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored
                                                                : UIImageOrientationRight;
    
        case UIDeviceOrientationLandscapeLeft:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored
                                                                : UIImageOrientationUp;
        case UIDeviceOrientationPortraitUpsideDown:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored
                                                                : UIImageOrientationLeft;
        case UIDeviceOrientationLandscapeRight:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored
                                                                : UIImageOrientationDown;
        case UIDeviceOrientationUnknown:
        case UIDeviceOrientationFaceUp:
        case UIDeviceOrientationFaceDown:
          return UIImageOrientationUp;
      }
    }
          
  • Создайте объект VisionImage используя объект CMSampleBuffer и ориентацию:

    Быстрый

    let image = VisionImage(buffer: sampleBuffer)
    image.orientation = imageOrientation(
      deviceOrientation: UIDevice.current.orientation,
      cameraPosition: cameraPosition)

    Цель-C

     MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer];
     image.orientation =
       [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                    cameraPosition:cameraPosition];

3. Запустите программу разметки изображений.

Чтобы пометить объекты на изображении, передайте объект image в метод process() ImageLabeler .

Асинхронно:

Быстрый

imageLabeler.process(image) { labels, error in
    guard error == nil, let labels = labels, !labels.isEmpty else {
        // Handle the error.
        return
    }
    // Show results.
}

Цель-C

[imageLabeler
    processImage:image
      completion:^(NSArray *_Nullable labels,
                   NSError *_Nullable error) {
        if (label.count == 0) {
            // Handle the error.
            return;
        }
        // Show results.
     }];

Синхронно:

Быстрый

var labels: [ImageLabel]
do {
    labels = try imageLabeler.results(in: image)
} catch let error {
    // Handle the error.
    return
}
// Show results.

Цель-C

NSError *error;
NSArray *labels =
    [imageLabeler resultsInImage:image error:&error];
// Show results or handle the error.

4. Получить информацию о помеченных объектах

Если операция маркировки изображения прошла успешно, она возвращает массив ImageLabel . Каждая ImageLabel представляет собой что-то, что было помечено на изображении. Вы можете получить текстовое описание каждой метки (если оно доступно в метаданных файла модели TensorFlow Lite), оценку достоверности и индекс. Например:

Быстрый

for label in labels {
  let labelText = label.text
  let confidence = label.confidence
  let index = label.index
}

Цель-C

for (MLKImageLabel *label in labels) {
  NSString *labelText = label.text;
  float confidence = label.confidence;
  NSInteger index = label.index;
}

Советы по повышению производительности в реальном времени

Если вы хотите маркировать изображения в приложении реального времени, следуйте этим рекомендациям для достижения наилучшей частоты кадров:

  • Для обработки видеокадров используйте синхронный API results(in:) детектора. Вызовите этот метод из функции captureOutput(_, didOutput:from:) AVCaptureVideoDataOutputSampleBufferDelegate , чтобы синхронно получить результаты из данного видеокадра. Оставьте для AVCaptureVideoDataOutput значение alwaysDiscardsLateVideoFrames как true , чтобы ограничить вызовы детектора. Если во время работы детектора появится новый видеокадр, он будет удален.
  • Если вы используете выходные данные детектора для наложения графики на входное изображение, сначала получите результат из ML Kit, затем визуализируйте изображение и наложите его за один шаг. При этом вы выполняете рендеринг на поверхность дисплея только один раз для каждого обработанного входного кадра. Пример см. в updatePreviewOverlayViewWithLastFrame в образце быстрого запуска ML Kit.