Etichetta le immagini con ML Kit su iOS

Puoi utilizzare ML Kit per etichettare gli oggetti riconosciuti in un'immagine. Il modello predefinito fornito con ML Kit supporta oltre 400 etichette diverse.

Prova

  • Prova l'app di esempio per per vedere un esempio di utilizzo di questa API.

Prima di iniziare

  1. Includi i seguenti pod ML Kit nel podfile:
    pod 'GoogleMLKit/ImageLabeling', '15.5.0'
    
  2. Dopo aver installato o aggiornato i pod del progetto, apri il progetto Xcode utilizzando la relativa .xcworkspace. ML Kit è supportato in Xcode versione 12.4 o successiva.

Ora è tutto pronto per etichettare le immagini.

1. Prepara l'immagine di input

Crea un oggetto VisionImage utilizzando un UIImage o un CMSampleBuffer.

Se usi un UIImage, segui questi passaggi:

  • Crea un oggetto VisionImage con UIImage. Assicurati di specificare il valore .orientation corretto.

    Swift

    let image = VisionImage(image: UIImage)
    visionImage.orientation = image.imageOrientation

    Objective-C

    MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image];
    visionImage.orientation = image.imageOrientation;

Se usi un CMSampleBuffer, segui questi passaggi:

  • Specifica l'orientamento dei dati dell'immagine contenuti nei CMSampleBuffer.

    Per ottenere l'orientamento dell'immagine:

    Swift

    func imageOrientation(
      deviceOrientation: UIDeviceOrientation,
      cameraPosition: AVCaptureDevice.Position
    ) -> UIImage.Orientation {
      switch deviceOrientation {
      case .portrait:
        return cameraPosition == .front ? .leftMirrored : .right
      case .landscapeLeft:
        return cameraPosition == .front ? .downMirrored : .up
      case .portraitUpsideDown:
        return cameraPosition == .front ? .rightMirrored : .left
      case .landscapeRight:
        return cameraPosition == .front ? .upMirrored : .down
      case .faceDown, .faceUp, .unknown:
        return .up
      }
    }
          

    Objective-C

    - (UIImageOrientation)
      imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                             cameraPosition:(AVCaptureDevicePosition)cameraPosition {
      switch (deviceOrientation) {
        case UIDeviceOrientationPortrait:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored
                                                                : UIImageOrientationRight;
    
        case UIDeviceOrientationLandscapeLeft:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored
                                                                : UIImageOrientationUp;
        case UIDeviceOrientationPortraitUpsideDown:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored
                                                                : UIImageOrientationLeft;
        case UIDeviceOrientationLandscapeRight:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored
                                                                : UIImageOrientationDown;
        case UIDeviceOrientationUnknown:
        case UIDeviceOrientationFaceUp:
        case UIDeviceOrientationFaceDown:
          return UIImageOrientationUp;
      }
    }
          
  • Crea un oggetto VisionImage utilizzando il metodo CMSampleBuffer oggetto e orientamento:

    Swift

    let image = VisionImage(buffer: sampleBuffer)
    image.orientation = imageOrientation(
      deviceOrientation: UIDevice.current.orientation,
      cameraPosition: cameraPosition)

    Objective-C

     MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer];
     image.orientation =
       [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                    cameraPosition:cameraPosition];

2. Configura ed esegui l'etichettatore delle immagini

Per etichettare gli oggetti in un'immagine, passa l'oggetto VisionImage all'elemento Metodo processImage() di ImageLabeler.

  1. Innanzitutto, ottieni un'istanza di ImageLabeler.

Swift

let labeler = ImageLabeler.imageLabeler()

// Or, to set the minimum confidence required:
// let options = ImageLabelerOptions()
// options.confidenceThreshold = 0.7
// let labeler = ImageLabeler.imageLabeler(options: options)

Objective-C

MLKImageLabeler *labeler = [MLKImageLabeler imageLabeler];

// Or, to set the minimum confidence required:
// MLKImageLabelerOptions *options =
//         [[MLKImageLabelerOptions alloc] init];
// options.confidenceThreshold = 0.7;
// MLKImageLabeler *labeler =
//         [MLKImageLabeler imageLabelerWithOptions:options];
  1. Quindi, passa l'immagine al metodo processImage():

Swift

labeler.process(image) { labels, error in
    guard error == nil, let labels = labels else { return }

    // Task succeeded.
    // ...
}

Objective-C

[labeler processImage:image
completion:^(NSArray *_Nullable labels,
            NSError *_Nullable error) {
   if (error != nil) { return; }

   // Task succeeded.
   // ...
}];

3. Ottieni informazioni sugli oggetti etichettati

Se l'etichettatura delle immagini ha esito positivo, il gestore del completamento riceve un array di ImageLabel oggetti. Ogni oggetto ImageLabel rappresenta qualcosa che era etichettate nell'immagine. Il modello di base supporta oltre 400 etichette diverse. Puoi ottenere la descrizione testuale di ogni etichetta e l'indice tra tutte le etichette supportate il modello e il punteggio di confidenza della corrispondenza. Ad esempio:

Swift

for label in labels {
    let labelText = label.text
    let confidence = label.confidence
    let index = label.index
}

Objective-C

for (MLKImageLabel *label in labels) {
   NSString *labelText = label.text;
   float confidence = label.confidence;
   NSInteger index = label.index;
}

Suggerimenti per migliorare il rendimento in tempo reale

Se vuoi etichettare le immagini in un'applicazione in tempo reale, segui questi passaggi: linee guida per ottenere le migliori frequenze fotogrammi:

  • Per elaborare i fotogrammi video, utilizza l'API sincrona results(in:) dell'etichettatore delle immagini. Chiama questo metodo dal di AVCaptureVideoDataOutputSampleBufferDelegate captureOutput(_, didOutput:from:) per ottenere in modo sincrono i risultati dal video specificato frame. Mantieni di AVCaptureVideoDataOutput alwaysDiscardsLateVideoFrames come true per limitare le chiamate all'etichettatore delle immagini. Se un nuovo il frame video diventa disponibile mentre l'etichettatore delle immagini è in esecuzione e verrà eliminato.
  • Se utilizzi l'output dello strumento di etichettatura delle immagini per sovrapporre gli elementi grafici l'immagine di input, occorre prima ottenere il risultato da ML Kit, quindi eseguire il rendering dell'immagine e la sovrapposizione in un solo passaggio. In questo modo, puoi visualizzare i contenuti solo una volta per ogni frame di input elaborato. Vedi la pagina updatePreviewOverlayViewWithLastFrame. nell'esempio della guida rapida di ML Kit.