Rileva e monitora gli oggetti con ML Kit su Android

Puoi utilizzare ML Kit per rilevare e tenere traccia degli oggetti in fotogrammi video successivi.

Quando passi un'immagine a ML Kit, questo rileva fino a cinque oggetti nell'immagine, insieme alla posizione di ciascuno di essi. Durante il rilevamento degli oggetti nei flussi video, ogni oggetto ha un ID univoco che consente di monitorare l'oggetto da un frame all'altro. Facoltativamente, puoi abilitare la classificazione di oggetti approssimativi, che etichettano gli oggetti con descrizioni generiche.

Prova

Prima di iniziare

  1. Nel file build.gradle a livello di progetto, assicurati di includere il Repository Maven di Google in entrambe le sezioni buildscript e allprojects.
  2. Aggiungi le dipendenze per le librerie Android ML Kit al file gradle a livello di app del tuo modulo, che in genere è app/build.gradle:
    dependencies {
      // ...
    
      implementation 'com.google.mlkit:object-detection:17.0.0'
    
    }
    

1. Configura il rilevatore di oggetti

Per rilevare e monitorare gli oggetti, devi prima creare un'istanza di ObjectDetector e, se necessario, specificare le impostazioni del rilevatore che vuoi modificare rispetto a quelle predefinite.

  1. Configura il rilevatore di oggetti per il tuo caso d'uso con un oggetto ObjectDetectorOptions. Puoi modificare le seguenti impostazioni:

    Impostazioni rilevatore di oggetti
    Modalità di rilevamento STREAM_MODE (valore predefinito) | SINGLE_IMAGE_MODE

    In STREAM_MODE (impostazione predefinita), il rilevatore di oggetti viene eseguito con bassa latenza, ma potrebbe produrre risultati incompleti (ad esempio riquadri di delimitazione o etichette di categoria non specificati) durante le prime chiamate al rilevatore. Inoltre, in STREAM_MODE, il rilevatore assegna agli oggetti ID di monitoraggio che possono essere utilizzati per tenere traccia degli oggetti tra i frame. Utilizza questa modalità quando desideri monitorare gli oggetti o quando la bassa latenza è importante, ad esempio durante l'elaborazione di stream video in tempo reale.

    In SINGLE_IMAGE_MODE, il rilevatore di oggetti restituisce il risultato dopo aver determinato il riquadro di delimitazione dell'oggetto. Se abiliti anche la classificazione, viene restituito il risultato dopo che il riquadro di delimitazione e l'etichetta della categoria sono entrambi disponibili. Di conseguenza, la latenza del rilevamento è potenzialmente più elevata. Inoltre, in SINGLE_IMAGE_MODE, gli ID monitoraggio non sono assegnati. Utilizza questa modalità se la latenza non è critica e non vuoi avere a che fare con risultati parziali.

    Rileva e monitora più oggetti false (valore predefinito) | true

    Indica se rilevare e tracciare fino a cinque oggetti o solo l'oggetto più in evidenza (impostazione predefinita).

    Classificare gli oggetti false (valore predefinito) | true

    Indica se classificare o meno gli oggetti rilevati in categorie approssimative. Quando è abilitato, il rilevatore di oggetti classifica gli oggetti nelle seguenti categorie: articoli di moda, cibo, articoli per la casa, luoghi e piante.

    L'API di rilevamento e monitoraggio degli oggetti è ottimizzata per questi due casi d'uso principali:

    • Rilevamento e tracciamento in tempo reale dell'oggetto più in evidenza nel mirino della fotocamera.
    • Il rilevamento di più oggetti da un'immagine statica.

    Per configurare l'API per questi casi d'uso:

    Kotlin

    // Live detection and tracking
    val options = ObjectDetectorOptions.Builder()
            .setDetectorMode(ObjectDetectorOptions.STREAM_MODE)
            .enableClassification()  // Optional
            .build()
    
    // Multiple object detection in static images
    val options = ObjectDetectorOptions.Builder()
            .setDetectorMode(ObjectDetectorOptions.SINGLE_IMAGE_MODE)
            .enableMultipleObjects()
            .enableClassification()  // Optional
            .build()

    Java

    // Live detection and tracking
    ObjectDetectorOptions options =
            new ObjectDetectorOptions.Builder()
                    .setDetectorMode(ObjectDetectorOptions.STREAM_MODE)
                    .enableClassification()  // Optional
                    .build();
    
    // Multiple object detection in static images
    ObjectDetectorOptions options =
            new ObjectDetectorOptions.Builder()
                    .setDetectorMode(ObjectDetectorOptions.SINGLE_IMAGE_MODE)
                    .enableMultipleObjects()
                    .enableClassification()  // Optional
                    .build();
  2. Ottieni un'istanza di ObjectDetector:

    Kotlin

    val objectDetector = ObjectDetection.getClient(options)

    Java

    ObjectDetector objectDetector = ObjectDetection.getClient(options);

2. Prepara l'immagine di input

Per rilevare e monitorare gli oggetti, passa le immagini al metodo process() dell'istanza ObjectDetector.

Il rilevatore di oggetti viene eseguito direttamente da un ByteBuffer Bitmap, NV21 o un media.Image YUV_420_888. Ti consigliamo di creare un InputImage da queste origini se hai accesso diretto a una di queste origini. Se crei un InputImage da altre origini, ci occuperemo noi della conversione internamente e potrebbe essere meno efficiente.

Per ogni frame di video o immagine in una sequenza:

Puoi creare un oggetto InputImage da origini diverse, illustrate di seguito.

Uso di un media.Image

Per creare un oggetto InputImage da un oggetto media.Image, ad esempio quando acquisisci un'immagine dalla fotocamera di un dispositivo, trasmetti l'oggetto media.Image e la rotazione dell'immagine a InputImage.fromMediaImage().

Se utilizzi la libreria FotocameraX, le classi OnImageCapturedListener e ImageAnalysis.Analyzer calcolano automaticamente il valore di rotazione.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Se non utilizzi una raccolta della fotocamera che mostra il grado di rotazione dell'immagine, puoi calcolarlo in base al grado di rotazione del dispositivo e all'orientamento del sensore della fotocamera nel dispositivo:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Quindi, passa l'oggetto media.Image e il valore del grado di rotazione a InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Utilizzare l'URI di un file

Per creare un oggetto InputImage da un URI del file, passa il contesto dell'app e l'URI del file a InputImage.fromFilePath(). Questo è utile quando utilizzi un intent ACTION_GET_CONTENT per richiedere all'utente di selezionare un'immagine dall'app Galleria.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Con ByteBuffer o ByteArray

Per creare un oggetto InputImage da un oggetto ByteBuffer o ByteArray, calcola prima il grado di rotazione dell'immagine come descritto in precedenza per l'input media.Image. Quindi, crea l'oggetto InputImage con il buffer o l'array, insieme ad altezza, larghezza, formato di codifica del colore e grado di rotazione dell'immagine:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Uso di un Bitmap

Per creare un oggetto InputImage da un oggetto Bitmap, effettua la seguente dichiarazione:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

L'immagine è rappresentata da un oggetto Bitmap con gradi di rotazione.

3. Elabora l'immagine

Passa l'immagine al metodo process():

Kotlin

objectDetector.process(image)
    .addOnSuccessListener { detectedObjects ->
        // Task completed successfully
        // ...
    }
    .addOnFailureListener { e ->
        // Task failed with an exception
        // ...
    }

Java

objectDetector.process(image)
    .addOnSuccessListener(
        new OnSuccessListener<List<DetectedObject>>() {
            @Override
            public void onSuccess(List<DetectedObject> detectedObjects) {
                // Task completed successfully
                // ...
            }
        })
    .addOnFailureListener(
        new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

4. Visualizza informazioni sugli oggetti rilevati

Se la chiamata a process() ha esito positivo, viene passato un elenco di DetectedObject al listener di operazione riuscita.

Ogni DetectedObject contiene le seguenti proprietà:

Riquadro di delimitazione Un Rect che indica la posizione dell'oggetto nell'immagine.
ID monitoraggio Un numero intero che identifica l'oggetto nelle immagini. Null in SINGLE_IMAGE_MODE.
Etichette
Descrizione etichetta La descrizione testuale dell'etichetta. Sarà una delle costanti stringa definite in PredefinedCategory.
Indice etichetta L'indice dell'etichetta tra tutte le etichette supportate dal classificatore. Sarà una delle costanti intere definite in PredefinedCategory.
Affidabilità etichetta Il valore di confidenza della classificazione degli oggetti.

Kotlin

for (detectedObject in detectedObjects) {
    val boundingBox = detectedObject.boundingBox
    val trackingId = detectedObject.trackingId
    for (label in detectedObject.labels) {
        val text = label.text
        if (PredefinedCategory.FOOD == text) {
            ...
        }
        val index = label.index
        if (PredefinedCategory.FOOD_INDEX == index) {
            ...
        }
        val confidence = label.confidence
    }
}

Java

// The list of detected objects contains one item if multiple
// object detection wasn't enabled.
for (DetectedObject detectedObject : detectedObjects) {
    Rect boundingBox = detectedObject.getBoundingBox();
    Integer trackingId = detectedObject.getTrackingId();
    for (Label label : detectedObject.getLabels()) {
        String text = label.getText();
        if (PredefinedCategory.FOOD.equals(text)) {
            ...
        }
        int index = label.getIndex();
        if (PredefinedCategory.FOOD_INDEX == index) {
            ...
        }
        float confidence = label.getConfidence();
    }
}

Garantire un'ottima esperienza utente

Per un'esperienza utente ottimale, segui queste linee guida nella tua app:

  • Il corretto rilevamento degli oggetti dipende dalla complessità visiva dell'oggetto. Per essere rilevati, gli oggetti con un numero ridotto di caratteristiche visive potrebbero dover occupare una parte più ampia dell'immagine. Fornisci agli utenti indicazioni su come acquisire input che funzionino bene con il tipo di oggetti che vuoi rilevare.
  • Quando utilizzi la classificazione, se vuoi rilevare oggetti che non rientrano perfettamente nelle categorie supportate, implementa una gestione speciale per gli oggetti sconosciuti.

Scopri anche l'app ML Kit Material Design per la vetrina e la raccolta Pattern per funzionalità basate sul machine learning di Material Design.

Miglioramento delle prestazioni

Se vuoi utilizzare il rilevamento di oggetti in un'applicazione in tempo reale, segui queste linee guida per ottenere le frequenze fotogrammi migliori:

  • Quando utilizzi la modalità flusso in un'applicazione in tempo reale, non utilizzare il rilevamento di più oggetti, poiché la maggior parte dei dispositivi non sarà in grado di produrre frequenze fotogrammi adeguate.

  • Disabilita la classificazione se non ti serve.

  • Se utilizzi l'API Camera o camera2, limita le chiamate al rilevatore. Se un nuovo frame video diventa disponibile mentre il rilevatore è in esecuzione, rilascialo. Per un esempio, consulta la classe VisionProcessorBase nell'app di esempio della guida rapida.
  • Se utilizzi l'API CameraX, assicurati che la strategia di contropressione sia impostata sul valore predefinito ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. Ciò garantisce che verrà inviata per l'analisi una sola immagine alla volta. Se vengono prodotte più immagini quando l'analizzatore è occupato, queste verranno eliminate automaticamente e non verranno inserite nella coda per l'invio. Dopo aver chiuso l'immagine analizzata chiamando ImageProxy.close(), verrà pubblicata la successiva immagine più recente.
  • Se utilizzi l'output del rilevatore per sovrapporre gli elementi grafici all'immagine di input, recupera prima il risultato da ML Kit, quindi esegui il rendering dell'immagine e dell'overlay in un solo passaggio. Il rendering viene eseguito sulla piattaforma di visualizzazione una sola volta per ogni frame di input. Per un esempio, consulta le classi CameraSourcePreview e GraphicOverlay nell'app di esempio della guida rapida.
  • Se utilizzi l'API Camera2, acquisisci le immagini in formato ImageFormat.YUV_420_888. Se utilizzi l'API Camera precedente, acquisisci le immagini in formato ImageFormat.NV21.