Android'de ML Kit ile nesneleri algılama ve izleme

Ardışık video karelerindeki nesneleri algılayıp takip etmek için ML Kit'i kullanabilirsiniz.

Bir görüntüyü ML Kit'e ilettiğinizde, görüntüdeki her bir nesnenin konumuyla birlikte görüntüdeki en fazla beş nesne algılanır. Video akışlarındaki nesneleri tespit ederken her nesnenin, nesneyi kareden kareye izlemek için kullanabileceğiniz benzersiz bir kimliği vardır. İsteğe bağlı olarak, nesneleri geniş kategori açıklamalarıyla etiketleyen genel nesne sınıflandırmasını da etkinleştirebilirsiniz.

Deneyin

Başlamadan önce

  1. Proje düzeyindeki build.gradle dosyanızda, Google'ın Maven deposunu hem buildscript hem de allprojects bölümlerinize eklediğinizden emin olun.
  2. ML Kit Android kitaplıklarının bağımlılıklarını modülünüzün uygulama düzeyindeki Gradle dosyasına ekleyin. Bu dosya, genellikle app/build.gradle:
    dependencies {
      // ...
    
      implementation 'com.google.mlkit:object-detection:17.0.1'
    
    }
    

1. Nesne algılayıcısını yapılandırma

Nesneleri algılamak ve izlemek için önce ObjectDetector örneği oluşturun ve isteğe bağlı olarak, varsayılandan değiştirmek istediğiniz algılayıcı ayarlarını belirtin.

  1. Kullanım alanınız için nesne algılayıcıyı bir ObjectDetectorOptions nesnesiyle yapılandırın. Aşağıdaki ayarları değiştirebilirsiniz:

    Nesne Algılayıcı Ayarları
    Algılama modu STREAM_MODE (varsayılan) | SINGLE_IMAGE_MODE

    Nesne algılayıcı, STREAM_MODE öğesinde (varsayılan) düşük gecikmeyle çalışır, ancak algılayıcının ilk birkaç çağrısında eksik sonuçlar (belirtilmemiş sınırlayıcı kutular veya kategori etiketleri gibi) üretebilir. Ayrıca, STREAM_MODE işlevinde algılayıcı nesnelere izleme kimlikleri atar. Bunları çerçeveler arasında nesne izlemek için kullanabilirsiniz. Nesneleri izlemek istediğinizde veya düşük gecikmenin önemli olduğu durumlarda (örneğin, video akışlarını gerçek zamanlı olarak işlerken) bu modu kullanın.

    SINGLE_IMAGE_MODE ürününde nesne algılayıcı, nesnenin sınırlayıcı kutusu belirlendikten sonra sonucu döndürür. Sınıflandırmayı da etkinleştirirseniz sonucu, sınırlayıcı kutu ve kategori etiketi kullanılabilir olduğunda döndürür. Bunun sonucunda algılama gecikmesi potansiyel olarak daha yüksek olur. Ayrıca, SINGLE_IMAGE_MODE içinde izleme kimlikleri atanmaz. Gecikme kritik değilse ve kısmi sonuçlarla uğraşmak istemiyorsanız bu modu kullanın.

    Birden fazla nesneyi algılama ve izleme false (varsayılan) | true

    En fazla beş nesnenin mı yoksa yalnızca en belirgin nesnenin mı algılanacağını ve izleneceğini belirtir (varsayılan).

    Nesneleri sınıflandırma false (varsayılan) | true

    Algılanan nesnelerin genel kategorilere göre sınıflandırılıp sınıflandırılmayacağı. Etkinleştirildiğinde nesne algılayıcı, nesneleri şu kategorilerde sınıflandırır: moda eşyaları, gıda, ev eşyaları, yerler ve bitkiler.

    Nesne algılama ve izleme API'si, şu iki temel kullanım alanı için optimize edilmiştir:

    • Kamera vizöründe en belirgin nesnenin canlı olarak algılanması ve izlenmesi.
    • Statik bir görüntüden birden fazla nesnenin algılanması.

    API'yi bu kullanım alanlarına göre yapılandırmak için:

    Kotlin

    // Live detection and tracking
    val options = ObjectDetectorOptions.Builder()
            .setDetectorMode(ObjectDetectorOptions.STREAM_MODE)
            .enableClassification()  // Optional
            .build()
    
    // Multiple object detection in static images
    val options = ObjectDetectorOptions.Builder()
            .setDetectorMode(ObjectDetectorOptions.SINGLE_IMAGE_MODE)
            .enableMultipleObjects()
            .enableClassification()  // Optional
            .build()

    Java

    // Live detection and tracking
    ObjectDetectorOptions options =
            new ObjectDetectorOptions.Builder()
                    .setDetectorMode(ObjectDetectorOptions.STREAM_MODE)
                    .enableClassification()  // Optional
                    .build();
    
    // Multiple object detection in static images
    ObjectDetectorOptions options =
            new ObjectDetectorOptions.Builder()
                    .setDetectorMode(ObjectDetectorOptions.SINGLE_IMAGE_MODE)
                    .enableMultipleObjects()
                    .enableClassification()  // Optional
                    .build();
  2. ObjectDetector öğesinin bir örneğini alın:

    Kotlin

    val objectDetector = ObjectDetection.getClient(options)

    Java

    ObjectDetector objectDetector = ObjectDetection.getClient(options);

2. Giriş görüntüsünü hazırlama

Nesneleri algılamak ve izlemek için görüntüleri ObjectDetector örneğine ait process() yöntemine geçirin.

Nesne algılayıcı doğrudan Bitmap, NV21 ByteBuffer veya bir YUV_420_888 media.Image kaynağından çalışır. Bu kaynaklardan birine doğrudan erişiminiz varsa bu kaynaklardan bir InputImage oluşturmanız önerilir. Diğer kaynaklardan bir InputImage oluşturursanız dönüşümü sizin için dahili olarak ele alırız ve bu daha az etkili olabilir.

Bir dizideki her bir video veya resim karesi için aşağıdakileri yapın:

Farklı kaynaklardan InputImage nesnesi oluşturabilirsiniz. Nesnelerin her biri aşağıda açıklanmıştır.

media.Image kullanılıyor

Bir media.Image nesnesinden InputImage nesnesi oluşturmak için (örneğin, bir cihazın kamerasından resim çekerken) media.Image nesnesini ve resmin dönüşünü InputImage.fromMediaImage() konumuna getirin.

KameraX kitaplığını kullanırsanız OnImageCapturedListener ve ImageAnalysis.Analyzer sınıfları, döndürme değerini sizin için hesaplar.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Resmin dönüş derecesini belirten bir kamera kitaplığı kullanmıyorsanız bunu cihazın döndürme derecesinden ve cihazdaki kamera sensörünün yönüne göre hesaplayabilirsiniz:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Daha sonra, media.Image nesnesini ve döndürme derecesi değerini InputImage.fromMediaImage() öğesine iletin:

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Dosya URI'si kullanma

Dosya URI'sinden InputImage nesnesi oluşturmak için uygulama bağlamını ve dosya URI'sini InputImage.fromFilePath() adresine iletin. Bu, kullanıcıdan galeri uygulamasından bir resim seçmesini istemek için bir ACTION_GET_CONTENT amacı kullandığınızda faydalıdır.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

ByteBuffer veya ByteArray kullanma

ByteBuffer veya ByteArray öğesinden InputImage nesnesi oluşturmak için önce daha önce media.Image girişi için açıklandığı gibi resim döndürme derecesini hesaplayın. Ardından, InputImage nesnesini resmin yüksekliği, genişliği, renk kodlama biçimi ve döndürme derecesiyle birlikte arabellek veya diziyle oluşturun:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Bitmap kullanılıyor

Bir Bitmap nesnesinden InputImage nesnesi oluşturmak için aşağıdaki bildirimi yapın:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Resim, döndürme dereceleriyle birlikte bir Bitmap nesnesiyle temsil edilir.

3. Resmi işle

Resmi process() yöntemine geçirin:

Kotlin

objectDetector.process(image)
    .addOnSuccessListener { detectedObjects ->
        // Task completed successfully
        // ...
    }
    .addOnFailureListener { e ->
        // Task failed with an exception
        // ...
    }

Java

objectDetector.process(image)
    .addOnSuccessListener(
        new OnSuccessListener<List<DetectedObject>>() {
            @Override
            public void onSuccess(List<DetectedObject> detectedObjects) {
                // Task completed successfully
                // ...
            }
        })
    .addOnFailureListener(
        new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

4. Algılanan nesneler hakkında bilgi alma

process() çağrısı başarılı olursa başarı işleyiciye DetectedObject listesi iletilir.

Her DetectedObject aşağıdaki özellikleri içerir:

Sınırlayıcı kutu Resimdeki nesnenin konumunu belirten Rect.
İzleme Kimliği Nesneyi resimler arasında tanımlayan bir tam sayı. SINGLE_IMAGE_MODE olarak boş bırakılmış.
Etiketler
Etiket açıklaması Etiketin metin açıklaması. Bu değer, PredefinedCategory içinde tanımlanan Dize sabit değerlerinden biri olur.
Etiket dizini Sınıflandırıcı tarafından desteklenen tüm etiketler arasında etiketin dizini. PredefinedCategory içinde tanımlanan tam sayı sabitlerinden biri olacaktır.
Etiket güvenilirliği Nesne sınıflandırmasının güven değeri.

Kotlin

for (detectedObject in detectedObjects) {
    val boundingBox = detectedObject.boundingBox
    val trackingId = detectedObject.trackingId
    for (label in detectedObject.labels) {
        val text = label.text
        if (PredefinedCategory.FOOD == text) {
            ...
        }
        val index = label.index
        if (PredefinedCategory.FOOD_INDEX == index) {
            ...
        }
        val confidence = label.confidence
    }
}

Java

// The list of detected objects contains one item if multiple
// object detection wasn't enabled.
for (DetectedObject detectedObject : detectedObjects) {
    Rect boundingBox = detectedObject.getBoundingBox();
    Integer trackingId = detectedObject.getTrackingId();
    for (Label label : detectedObject.getLabels()) {
        String text = label.getText();
        if (PredefinedCategory.FOOD.equals(text)) {
            ...
        }
        int index = label.getIndex();
        if (PredefinedCategory.FOOD_INDEX == index) {
            ...
        }
        float confidence = label.getConfidence();
    }
}

Harika bir kullanıcı deneyimi sağlama

En iyi kullanıcı deneyimi için uygulamanızda aşağıdaki yönergeleri uygulayın:

  • Nesne algılama işleminin başarılı olması, nesnenin görsel karmaşıklığına bağlıdır. Az sayıda görsel özelliğe sahip nesnelerin algılanmaları için resmin daha büyük bir kısmını kaplamaları gerekebilir. Kullanıcılara, algılamak istediğiniz nesne türleri için uygun girdileri yakalama konusunda rehberlik sağlamalısınız.
  • Sınıflandırma kullanırken, desteklenen kategorilere uygun şekilde yer almayan nesneleri algılamak isterseniz bilinmeyen nesneler için özel işleme uygulayın.

Ayrıca, Makine Öğrenimi Kiti Materyal Tasarımı vitrin uygulaması ve Makine öğrenimi destekli özellikler için Materyal Kalıplar koleksiyonuna da göz atın.

Performansı artırma

Nesne algılamayı gerçek zamanlı bir uygulamada kullanmak istiyorsanız en iyi kare hızlarını elde etmek için şu yönergeleri uygulayın:

  • Gerçek zamanlı bir uygulamada akış modunu kullanırken çoğu cihaz yeterli kare hızı üretemeyeceğinden çoklu nesne algılamayı kullanmayın.

  • İhtiyacınız yoksa sınıflandırmayı devre dışı bırakın.

  • Camera veya camera2 API kullanıyorsanız algılayıcıya yapılan çağrıları daraltın. Algılayıcı çalışırken yeni bir video karesi kullanılabilir hale gelirse kareyi bırakın. Örnek için hızlı başlangıç örnek uygulamasındaki VisionProcessorBase sınıfına bakın.
  • CameraX API'yi kullanıyorsanız geri basınç stratejisinin varsayılan değeri ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST olarak ayarlandığından emin olun. Bu, analiz için tek seferde yalnızca bir görüntünün gönderilmesini garanti eder. Analiz aracı meşgulken daha fazla görüntü üretilirse bu görüntüler otomatik olarak bırakılır ve teslim edilmek üzere sıraya alınmaz. Analiz edilen resim, ImageProxy.close() çağrısı yapılarak kapatıldıktan sonra, bir sonraki en son resim yayınlanır.
  • Algılayıcının çıkışını giriş görüntüsünün üzerine grafik yerleştirmek için kullanırsanız önce sonucu ML Kit'ten alın, ardından görüntüyü ve yer paylaşımını tek bir adımda oluşturun. Bu işlem, her giriş çerçevesi için ekran yüzeyinde yalnızca bir kez oluşturulur. Örnek için hızlı başlangıç örnek uygulamasındaki CameraSourcePreview ve GraphicOverlay sınıflarına göz atın.
  • Camera2 API'sini kullanıyorsanız görüntüleri ImageFormat.YUV_420_888 biçiminde yakalayın. Eski Camera API'sini kullanıyorsanız görüntüleri ImageFormat.NV21 biçiminde çekin.