Android पर एमएल किट की मदद से चीज़ों का पता लगाएं और उन्हें ट्रैक करें

एमएल किट का इस्तेमाल, वीडियो फ़्रेम में ऑब्जेक्ट का पता लगाने और उन्हें ट्रैक करने के लिए किया जा सकता है.

जब कोई इमेज ML Kit में पास की जाती है, तो यह इमेज में ज़्यादा से ज़्यादा पांच ऑब्जेक्ट का पता लगाती है साथ ही, आपको इमेज में हर ऑब्जेक्ट की जगह की जानकारी भी मिलेगी. इसमें ऑब्जेक्ट का पता लगाते समय वीडियो स्ट्रीम, हर ऑब्जेक्ट का एक यूनीक आईडी होता है, जिसका इस्तेमाल करके ऑब्जेक्ट को ट्रैक किया जा सकता है से फ़्रेम-दर-फ़्रेम सेट करें. आपके पास कर्स ऑब्जेक्ट को चालू करने का विकल्प भी है क्लासिफ़िकेशन, जो ऑब्जेक्ट की कैटगरी के बारे में पूरी जानकारी देने वाले लेबल को लेबल करता है.

इसे आज़माएं

शुरू करने से पहले

  1. अपनी प्रोजेक्ट-लेवल की build.gradle फ़ाइल में, यह पक्का करें कि आपके buildscript और, दोनों में Google की Maven रिपॉज़िटरी allprojects सेक्शन.
  2. अपने मॉड्यूल में ML Kit Android लाइब्रेरी के लिए डिपेंडेंसी जोड़ें ऐप्लिकेशन-लेवल की Gradle फ़ाइल, जो आम तौर पर app/build.gradle होती है:
    dependencies {
      // ...
    
      implementation 'com.google.mlkit:object-detection:17.0.2'
    
    }
    

1. ऑब्जेक्ट डिटेक्टर को कॉन्फ़िगर करें

ऑब्जेक्ट का पता लगाने और उन्हें ट्रैक करने के लिए, पहले ObjectDetector का एक इंस्टेंस बनाएं और विकल्प के तौर पर, डिटेक्टर की ऐसी सेटिंग चुनें जिन्हें आपको डिफ़ॉल्ट.

  1. अपने इस्तेमाल के उदाहरण के लिए, ऑब्जेक्ट डिटेक्टर को ObjectDetectorOptions ऑब्जेक्ट. आपके पास इन्हें बदलने का विकल्प है सेटिंग:

    ऑब्जेक्ट डिटेक्टर की सेटिंग
    पहचान मोड STREAM_MODE (डिफ़ॉल्ट) | SINGLE_IMAGE_MODE

    STREAM_MODE (डिफ़ॉल्ट तौर पर) में, ऑब्जेक्ट डिटेक्टर चलता है लेकिन इंतज़ार का समय कम हो, लेकिन हो सकता है कि नतीजे पूरे न हों (जैसे कि अनिर्दिष्ट बाउंडिंग बॉक्स या कैटगरी लेबल) डिटेक्टर के इस्तेमाल से जुड़ी जानकारी. साथ ही, STREAM_MODE में, डिटेक्टर, ऑब्जेक्ट को ट्रैकिंग आईडी असाइन करता है, जिनका इस्तेमाल इन कामों के लिए किया जा सकता है अलग-अलग फ़्रेम पर ऑब्जेक्ट ट्रैक कर सकते हैं. ट्रैक करने के लिए, इस मोड का इस्तेमाल करें ऑब्जेक्ट या जब इंतज़ार का समय कम होना ज़रूरी हो, जैसे कि प्रोसेस करते समय रीयल टाइम में वीडियो स्ट्रीम करने की सुविधा मिलती है.

    SINGLE_IMAGE_MODE में, ऑब्जेक्ट डिटेक्टर वापस लौटता है ऑब्जेक्ट का बाउंडिंग बॉक्स तय करने के बाद मिलने वाला नतीजा. अगर आपको क्लासिफ़िकेशन के बाद, यह बाउंडिंग के बाद नतीजा दिखाता है बॉक्स और श्रेणी लेबल, दोनों उपलब्ध हैं. इस वजह से, जांच में लगने वाला समय ज़्यादा हो सकता है. साथ ही, SINGLE_IMAGE_MODE, ट्रैकिंग आईडी असाइन नहीं किए गए हैं. इस्तेमाल की जाने वाली चीज़ें यह मोड तब लागू होता है, जब इंतज़ार का समय काफ़ी अहम न हो और आपको आंशिक नतीजे.

    एक से ज़्यादा ऑब्जेक्ट का पता लगाएं और उन्हें ट्रैक करें false (डिफ़ॉल्ट) | true

    ज़्यादा से ज़्यादा पांच ऑब्जेक्ट या सिर्फ़ सबसे ज़्यादा ऑब्जेक्ट का पता लगाना और उन्हें ट्रैक करना है या नहीं साफ़ तौर पर दिखने वाला ऑब्जेक्ट (डिफ़ॉल्ट).

    ऑब्जेक्ट को वर्गीकृत करें false (डिफ़ॉल्ट) | true

    पता लगाए गए ऑब्जेक्ट को अनुमानित कैटगरी में बांटना है या नहीं. चालू होने पर, ऑब्जेक्ट की पहचान करने वाला टूल ये कैटगरी हैं: फ़ैशन के सामान, खाना, घरेलू सामान, पौधे भी लगा सकते हैं.

    ऑब्जेक्ट की पहचान और ट्रैकिंग एपीआई को इन दो मुख्य इस्तेमाल के लिए ऑप्टिमाइज़ किया गया है मामले:

    • कैमरे में सबसे ज़रूरी चीज़ का लाइव पता लगाना और उसे ट्रैक करना व्यूफ़ाइंडर.
    • किसी स्टैटिक इमेज से कई ऑब्जेक्ट की पहचान करना.

    एपीआई को इस्तेमाल के इन उदाहरणों के हिसाब से कॉन्फ़िगर करने के लिए:

    Kotlin

    // Live detection and tracking
    val options = ObjectDetectorOptions.Builder()
            .setDetectorMode(ObjectDetectorOptions.STREAM_MODE)
            .enableClassification()  // Optional
            .build()
    
    // Multiple object detection in static images
    val options = ObjectDetectorOptions.Builder()
            .setDetectorMode(ObjectDetectorOptions.SINGLE_IMAGE_MODE)
            .enableMultipleObjects()
            .enableClassification()  // Optional
            .build()

    Java

    // Live detection and tracking
    ObjectDetectorOptions options =
            new ObjectDetectorOptions.Builder()
                    .setDetectorMode(ObjectDetectorOptions.STREAM_MODE)
                    .enableClassification()  // Optional
                    .build();
    
    // Multiple object detection in static images
    ObjectDetectorOptions options =
            new ObjectDetectorOptions.Builder()
                    .setDetectorMode(ObjectDetectorOptions.SINGLE_IMAGE_MODE)
                    .enableMultipleObjects()
                    .enableClassification()  // Optional
                    .build();
  2. ObjectDetector का इंस्टेंस पाएं:

    Kotlin

    val objectDetector = ObjectDetection.getClient(options)

    Java

    ObjectDetector objectDetector = ObjectDetection.getClient(options);

2. इनपुट इमेज तैयार करें

ऑब्जेक्ट का पता लगाने और उन्हें ट्रैक करने के लिए, ObjectDetector को इमेज पास करें का process() तरीका है.

ऑब्जेक्ट डिटेक्टर सीधे Bitmap, NV21 ByteBuffer या YUV_420_888 media.Image. उन सोर्स से InputImage बनाया जा रहा है हमारा सुझाव है कि अगर आपके पास इनमें से किसी एक का सीधा ऐक्सेस हो. अगर आपको अन्य सोर्स का InputImage है, तो कन्वर्ज़न को हम हैंडल करेंगे आपके लिए कारगर साबित हो सकती है.

क्रम में मौजूद वीडियो के हर फ़्रेम या इमेज के लिए, यह तरीका अपनाएं:

एक InputImage बनाया जा सकता है अलग-अलग सोर्स के ऑब्जेक्ट के बारे में बताया गया है. हर ऑब्जेक्ट के बारे में नीचे बताया गया है.

media.Image का इस्तेमाल करके

InputImage बनाने के लिए किसी media.Image ऑब्जेक्ट से मिला ऑब्जेक्ट, जैसे कि जब आप किसी ऑब्जेक्ट से इमेज कैप्चर करते हैं फ़ोन का कैमरा इस्तेमाल करने के लिए, media.Image ऑब्जेक्ट को पास करें और इमेज के InputImage.fromMediaImage() का रोटेशन.

अगर आपको CameraX लाइब्रेरी, OnImageCapturedListener, और ImageAnalysis.Analyzer क्लास, रोटेशन वैल्यू को कैलकुलेट करती हैं आपके लिए.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

अगर इमेज का रोटेशन डिग्री देने वाली कैमरा लाइब्रेरी का इस्तेमाल नहीं किया जाता, तो डिवाइस की रोटेशन डिग्री और कैमरे के ओरिएंटेशन से इसका हिसाब लगा सकता है डिवाइस में सेंसर:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

इसके बाद, media.Image ऑब्जेक्ट को पास करें और InputImage.fromMediaImage() डिग्री पर घुमाव:

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

फ़ाइल यूआरआई का इस्तेमाल करना

InputImage बनाने के लिए किसी फ़ाइल यूआरआई से ऑब्जेक्ट को जोड़ने के लिए, ऐप्लिकेशन संदर्भ और फ़ाइल यूआरआई को InputImage.fromFilePath(). यह तब काम आता है, जब उपयोगकर्ता को चुनने का प्रॉम्प्ट भेजने के लिए, ACTION_GET_CONTENT इंटेंट का इस्तेमाल करें अपने गैलरी ऐप्लिकेशन से मिली इमेज शामिल करेगा.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

ByteBuffer या ByteArray का इस्तेमाल करना

InputImage बनाने के लिए ByteBuffer या ByteArray से लिया गया ऑब्जेक्ट है, तो पहले इमेज की गणना करें media.Image इनपुट के लिए पहले बताई गई रोटेशन डिग्री. इसके बाद, इमेज के साथ बफ़र या अरे का इस्तेमाल करके, InputImage ऑब्जेक्ट बनाएं ऊंचाई, चौड़ाई, कलर एन्कोडिंग फ़ॉर्मैट, और रोटेशन डिग्री:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Bitmap का इस्तेमाल करके

InputImage बनाने के लिए Bitmap ऑब्जेक्ट में बनाए गए ऑब्जेक्ट के लिए, यह एलान करें:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

इमेज को Bitmap ऑब्जेक्ट से, रोटेशन डिग्री के साथ दिखाया गया है.

3. इमेज प्रोसेस करें

process() तरीके से इमेज पास करें:

Kotlin

objectDetector.process(image)
    .addOnSuccessListener { detectedObjects ->
        // Task completed successfully
        // ...
    }
    .addOnFailureListener { e ->
        // Task failed with an exception
        // ...
    }

Java

objectDetector.process(image)
    .addOnSuccessListener(
        new OnSuccessListener<List<DetectedObject>>() {
            @Override
            public void onSuccess(List<DetectedObject> detectedObjects) {
                // Task completed successfully
                // ...
            }
        })
    .addOnFailureListener(
        new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

4. पता लगाए गए ऑब्जेक्ट के बारे में जानकारी पाएं

अगर process() को कॉल किया जाता है, तो DetectedObject की एक सूची सफलता की कहानी बयां करते हैं.

हर DetectedObject में ये प्रॉपर्टी शामिल होती हैं:

बाउंडिंग बॉक्स Rect, जो इमेज.
ट्रैकिंग आईडी वह पूर्णांक जो सभी इमेज में ऑब्जेक्ट की पहचान करता है. शून्य इन सिंगल_इमेज_मोड.
लेबल
लेबल वर्णन लेबल के टेक्स्ट की जानकारी. यह स्ट्रिंग में से एक होगा PredefinedCategory में कॉन्सटेंट तय किए गए हैं.
लेबल इंडेक्स द्वारा समर्थित सभी लेबल में से लेबल का इंडेक्स क्लासिफ़ायर का इस्तेमाल करें. यह तय किए गए पूर्णांक कॉन्सटेंट में से एक होगा PredefinedCategory में.
लेबल कॉन्फ़िडेंस ऑब्जेक्ट क्लासिफ़िकेशन की कॉन्फ़िडेंस वैल्यू.

Kotlin

for (detectedObject in detectedObjects) {
    val boundingBox = detectedObject.boundingBox
    val trackingId = detectedObject.trackingId
    for (label in detectedObject.labels) {
        val text = label.text
        if (PredefinedCategory.FOOD == text) {
            ...
        }
        val index = label.index
        if (PredefinedCategory.FOOD_INDEX == index) {
            ...
        }
        val confidence = label.confidence
    }
}

Java

// The list of detected objects contains one item if multiple
// object detection wasn't enabled.
for (DetectedObject detectedObject : detectedObjects) {
    Rect boundingBox = detectedObject.getBoundingBox();
    Integer trackingId = detectedObject.getTrackingId();
    for (Label label : detectedObject.getLabels()) {
        String text = label.getText();
        if (PredefinedCategory.FOOD.equals(text)) {
            ...
        }
        int index = label.getIndex();
        if (PredefinedCategory.FOOD_INDEX == index) {
            ...
        }
        float confidence = label.getConfidence();
    }
}

बेहतरीन उपयोगकर्ता अनुभव देना

बेहतरीन उपयोगकर्ता अनुभव के लिए, अपने ऐप्लिकेशन में इन दिशा-निर्देशों का पालन करें:

  • ऑब्जेक्ट की पहचान हो पाना, ऑब्जेक्ट की विज़ुअल जटिलता पर निर्भर करता है. तय सीमा में कम विज़ुअल सुविधाओं वाले ऑब्जेक्ट का पता लगाने के लिए, इस्तेमाल करके इमेज के बड़े हिस्से का इस्तेमाल किया जा सकता है. आपको उपयोगकर्ताओं को इसके बारे में दिशा-निर्देश देने चाहिए कैप्चर करना जो ऐसे ऑब्जेक्ट के साथ अच्छा काम करता है जिनका आपको पता लगाना है.
  • क्लासिफ़िकेशन का इस्तेमाल करते समय, अगर आपको ऐसे ऑब्जेक्ट का पता लगाना है जो गिरते नहीं हैं समर्थित श्रेणियों में साफ़ तौर पर, अज्ञात के लिए विशेष हैंडलिंग लागू करें ऑब्जेक्ट हैं.

साथ ही, इसे देखें ML Kit Material Design का शोकेस ऐप्लिकेशन और मटीरियल डिज़ाइन मशीन लर्निंग का इस्तेमाल करके काम करने वाली सुविधाओं के पैटर्न का कलेक्शन.

Improving performance

अगर आपको रीयल-टाइम ऐप्लिकेशन में ऑब्जेक्ट की पहचान करने की सुविधा का इस्तेमाल करना है, तो इन निर्देशों का पालन करें सबसे सही फ़्रेमरेट हासिल करने के लिए दिशा-निर्देश:

  • रीयल-टाइम ऐप्लिकेशन में स्ट्रीमिंग मोड का इस्तेमाल करते समय, एक से ज़्यादा बार ऑब्जेक्ट पहचानने की सुविधा मिलती है, क्योंकि ज़्यादातर डिवाइस सही फ़्रेमरेट नहीं बना पाएंगे.

  • अगर आपको डेटा की कैटगरी तय करने की ज़रूरत न हो, तो उसे बंद कर दें.

  • अगर आपको Camera या camera2 एपीआई, डिटेक्टर को कॉल थ्रॉटल करती हूँ. अगर किसी नए वीडियो पर डिटेक्टर के चलने के दौरान फ़्रेम उपलब्ध हो जाता है, फ़्रेम छोड़ दें. ज़्यादा जानकारी के लिए, उदाहरण के लिए, क्विकस्टार्ट सैंपल ऐप्लिकेशन में VisionProcessorBase क्लास.
  • अगर CameraX एपीआई का इस्तेमाल किया जाता है, तो पक्का करें कि बैक प्रेशर स्ट्रेटजी अपनी डिफ़ॉल्ट वैल्यू पर सेट है ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. इससे यह गारंटी मिलती है कि विश्लेषण के लिए एक बार में सिर्फ़ एक इमेज डिलीवर की जाएगी. अगर और इमेज जब एनालाइज़र व्यस्त होता है, तो उसे जनरेट कर दिया जाता है. उसे अपने-आप हटा दिया जाता है. डिलीवरी. जिस इमेज की जांच की जा रही है उसे बंद करने के लिए, इस नंबर पर कॉल करें Imageप्रॉक्सी.close(), अगली सबसे नई इमेज डिलीवर की जाएगी.
  • अगर ग्राफ़िक ओवरले करने के लिए डिटेक्टर के आउटपुट का इस्तेमाल किया जाता है, तो इनपुट इमेज को चुनने के बाद, पहले एमएल किट से नतीजा पाएं. इसके बाद, इमेज को रेंडर करें और ओवरले को एक ही चरण में पूरा करें. यह डिसप्ले की सतह पर रेंडर हो जाता है हर इनपुट फ़्रेम के लिए सिर्फ़ एक बार. ज़्यादा जानकारी के लिए, CameraSourcePreview और उदाहरण के लिए, क्विकस्टार्ट सैंपल ऐप्लिकेशन में GraphicOverlay क्लास.
  • Camera2 API का इस्तेमाल करने पर, इमेज यहां कैप्चर करें ImageFormat.YUV_420_888 फ़ॉर्मैट. अगर पुराने Camera API का इस्तेमाल किया जा रहा है, तो इमेज यहां कैप्चर करें ImageFormat.NV21 फ़ॉर्मैट.