ML Kit を使用してオブジェクトを検出して追跡する(Android)

ML Kit を使用すると、連続する動画フレーム内のオブジェクトを検出して追跡できます。

ML Kit に画像を渡すと、画像内で最大 5 つのオブジェクトが検出されます。 画像内の各オブジェクトの位置を確認できます対象物の検知時に 各オブジェクトには、そのオブジェクトを追跡するために使用できる 転送します。必要に応じて、おおまかなオブジェクトの 分類 - さまざまなカテゴリの説明でオブジェクトにラベルを付けます。

<ph type="x-smartling-placeholder">

試してみる

始める前に

<ph type="x-smartling-placeholder">

  1. プロジェクト レベルの build.gradle ファイルに、次の内容を含めます。 Google の Maven リポジトリを buildscriptallprojects セクション。
  2. ML Kit Android ライブラリの依存関係をモジュールの アプリレベルの Gradle ファイル(通常は app/build.gradle
    dependencies {
      // ...
    
      implementation 'com.google.mlkit:object-detection:17.0.1'
    
    }
    

1. オブジェクト検出を構成する

オブジェクトを検出して追跡するには、まず ObjectDetector のインスタンスを作成し、 必要に応じて、デフォルト構成から変更する検出項目の あります。

  1. 以下を使用して、ユースケースに合わせてオブジェクト検出を構成してください。 ObjectDetectorOptions オブジェクト。次の項目を変更できます。 設定:

    オブジェクト検出の設定
    検出モード STREAM_MODE(デフォルト)|SINGLE_IMAGE_MODE

    STREAM_MODE(デフォルト)では、オブジェクト検出が実行されます。 レイテンシは短くなりますが、不完全な結果( 未指定の境界ボックスやカテゴリラベルなど)を最初の数行に配置 検出機能の呼び出し。また、STREAM_MODEには、 検出機能によってオブジェクトにトラッキング ID が割り当てられます。この ID を使用して、 フレーム間でオブジェクトを追跡できます。このモードは または低レイテンシが重要な場合(たとえばデータの処理や リアルタイムで分析できます

    SINGLE_IMAGE_MODE では、オブジェクト検出によって以下が返されます。 オブジェクトの境界ボックスが決定した後の結果です。もし 分類を有効にすると、境界の後に結果が返されます。 ボックスとカテゴリラベルの両方を使用できます。その結果 レイテンシが高くなる可能性があります。また、 SINGLE_IMAGE_MODE、トラッキング ID は割り当てられていません。使用 このモードは、レイテンシが重要ではなく、 部分的な結果しか得られません。

    複数のオブジェクトを検出して追跡する false(デフォルト)|true

    最大 5 つのオブジェクトを検出して追跡するか、最も大きい 目立たせることができます(デフォルト)。

    オブジェクトを分類する false(デフォルト)|true

    検出されたオブジェクトを大まかなカテゴリに分類するかどうか。 有効にすると、オブジェクト検出はオブジェクトを 次のカテゴリ: ファッション アイテム、食品、日用品、 予測します。

    Object Detection and Tracking API は、この 2 つの主な用途のために最適化されています。 ケース:

    • カメラの中で最も目立つオブジェクトをライブ検出してトラッキング ビューファインダーです。
    • 静止画像からの複数のオブジェクトの検出。

    このようなユースケース向けに API を構成するには:

    Kotlin

    // Live detection and tracking
    val options = ObjectDetectorOptions.Builder()
            .setDetectorMode(ObjectDetectorOptions.STREAM_MODE)
            .enableClassification()  // Optional
            .build()
    
    // Multiple object detection in static images
    val options = ObjectDetectorOptions.Builder()
            .setDetectorMode(ObjectDetectorOptions.SINGLE_IMAGE_MODE)
            .enableMultipleObjects()
            .enableClassification()  // Optional
            .build()

    Java

    // Live detection and tracking
    ObjectDetectorOptions options =
            new ObjectDetectorOptions.Builder()
                    .setDetectorMode(ObjectDetectorOptions.STREAM_MODE)
                    .enableClassification()  // Optional
                    .build();
    
    // Multiple object detection in static images
    ObjectDetectorOptions options =
            new ObjectDetectorOptions.Builder()
                    .setDetectorMode(ObjectDetectorOptions.SINGLE_IMAGE_MODE)
                    .enableMultipleObjects()
                    .enableClassification()  // Optional
                    .build();
  2. ObjectDetector のインスタンスを取得します。

    Kotlin

    val objectDetector = ObjectDetection.getClient(options)

    Java

    ObjectDetector objectDetector = ObjectDetection.getClient(options);

2. 入力画像を準備する

オブジェクトを検出して追跡するには、ObjectDetector に画像を渡します。 インスタンスの process() メソッドを指定します。

オブジェクト検出は、Bitmap、NV21 ByteBuffer、または YUV_420_888 media.Image。これらのソースから InputImage を作成する これらのいずれかに直接アクセスできる場合はおすすめします。Pod の 他のソースからの InputImage がある場合は、Google が変換を処理します。 効率が低下する可能性があります

シーケンス内の動画または画像の各フレームに対して、次の操作を行います。

InputImage を作成できます。 異なるソースからのオブジェクトについて、以下で説明します。

media.Image の使用

InputImage を作成するには: media.Image オブジェクトからオブジェクトをキャプチャします。たとえば、 渡すには、media.Image オブジェクトと画像の InputImage.fromMediaImage() に変更します。

「 <ph type="x-smartling-placeholder"></ph> CameraX ライブラリ、OnImageCapturedListenerImageAnalysis.Analyzer クラスが回転値を計算する できます。

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

画像の回転角度を取得するカメラ ライブラリを使用しない場合は、 デバイスの回転角度とカメラの向きから計算できます。 次の動作を行います。

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

次に、media.Image オブジェクトと 回転角度の値を InputImage.fromMediaImage() に設定する:

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

ファイル URI の使用

InputImage を作成するには: 渡すことにより、アプリのコンテキストとファイルの URI を InputImage.fromFilePath()。これは、 ACTION_GET_CONTENT インテントを使用してユーザーに選択を求める ギャラリーアプリから画像を作成できます

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

ByteBuffer または ByteArray の使用

InputImage を作成するには: 作成するには、まず画像を計算してByteBufferByteArray 前述の media.Image 入力に対する回転角度。 次に、バッファまたは配列を含む InputImage オブジェクトを、画像の 高さ、幅、カラー エンコード形式、回転角度:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Bitmap の使用

InputImage を作成するには: Bitmap オブジェクトから呼び出す場合は、次のように宣言します。

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

画像は、Bitmap オブジェクトと回転角度で表されます。

3. 画像を処理する

画像を process() メソッドに渡します。

Kotlin

objectDetector.process(image)
    .addOnSuccessListener { detectedObjects ->
        // Task completed successfully
        // ...
    }
    .addOnFailureListener { e ->
        // Task failed with an exception
        // ...
    }

Java

objectDetector.process(image)
    .addOnSuccessListener(
        new OnSuccessListener<List<DetectedObject>>() {
            @Override
            public void onSuccess(List<DetectedObject> detectedObjects) {
                // Task completed successfully
                // ...
            }
        })
    .addOnFailureListener(
        new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });
<ph type="x-smartling-placeholder">

4. 検出されたオブジェクトに関する情報を取得する

process() の呼び出しが成功すると、DetectedObject のリストが次に渡されます。 成功リスナー。

DetectedObject には次のプロパティが含まれています。

境界ボックス オブジェクトの位置を示す Rect。 説明します。
トラッキング ID 画像全体でオブジェクトを識別する整数。null イン SINGLE_IMAGE_MODE。
ラベル
ラベルの説明 ラベルのテキストの説明。これは String 型の PredefinedCategory で定義された定数。
ラベル インデックス 分類器です。定義された整数定数のいずれかになります。 (PredefinedCategory
ラベルの信頼度 オブジェクト分類の信頼値。

Kotlin

for (detectedObject in detectedObjects) {
    val boundingBox = detectedObject.boundingBox
    val trackingId = detectedObject.trackingId
    for (label in detectedObject.labels) {
        val text = label.text
        if (PredefinedCategory.FOOD == text) {
            ...
        }
        val index = label.index
        if (PredefinedCategory.FOOD_INDEX == index) {
            ...
        }
        val confidence = label.confidence
    }
}

Java

// The list of detected objects contains one item if multiple
// object detection wasn't enabled.
for (DetectedObject detectedObject : detectedObjects) {
    Rect boundingBox = detectedObject.getBoundingBox();
    Integer trackingId = detectedObject.getTrackingId();
    for (Label label : detectedObject.getLabels()) {
        String text = label.getText();
        if (PredefinedCategory.FOOD.equals(text)) {
            ...
        }
        int index = label.getIndex();
        if (PredefinedCategory.FOOD_INDEX == index) {
            ...
        }
        float confidence = label.getConfidence();
    }
}

優れたユーザー エクスペリエンスの確保

最適なユーザー エクスペリエンスを実現するには、アプリで次のガイドラインを遵守してください。

  • オブジェクトの検出が成功するかどうかは、オブジェクトの視覚的な複雑さによって決まります。イン 検出するには、対象物の視覚的な特徴の数が少ない場合、 大きな部分を占めるようにしますユーザーに 検出したい種類のオブジェクトに適した入力をキャプチャします。
  • 分類を使用するときに、落下しないオブジェクトを検出したい場合 サポートされているカテゴリに明確に分類し、不明点に対する特別な処理を実装 説明します。

また、 ML Kit マテリアル デザイン ショーケース アプリと マテリアル デザイン ML を活用した特徴の収集のパターン

パフォーマンスの向上

リアルタイム アプリケーションでオブジェクト検出を使用する場合は、 実現するためのガイドラインは次のとおりです。

  • リアルタイム アプリケーションでストリーミング モードを使用する場合は、 物体の検出に重点を置いているためです。

  • 不要な場合は、分類を無効にします。

  • Camera または camera2 API、 スロットリングするように構成されています。新しい動画が フレームが使用可能になる場合は、そのフレームをドロップします。詳しくは、 <ph type="x-smartling-placeholder"></ph> VisionProcessorBase クラスをご覧ください。
  • CameraX API を使用する場合は、 バックプレッシャー戦略がデフォルト値に ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST。 これにより、分析のために一度に 1 つの画像のみが配信されるようになります。もしより多くの画像が 生成された場合、自動的に破棄され、 提供します。次の呼び出しによって分析中の画像を閉じたら、 ImageProxy.close() が呼び出されると、次に最新の画像が配信されます。
  • 検出機能の出力を使用して、ディスプレイにグラフィックをオーバーレイする場合、 まず ML Kit から結果を取得してから、画像をレンダリングする 1 ステップでオーバーレイできますこれにより、ディスプレイ サーフェスにレンダリングされます。 入力フレームごとに 1 回だけです。詳しくは、 <ph type="x-smartling-placeholder"></ph> CameraSourcePreview および GraphicOverlay クラスをご覧ください。
  • Camera2 API を使用する場合は、 ImageFormat.YUV_420_888 形式。古い Camera API を使用する場合は、 ImageFormat.NV21 形式。