เมื่อคุณส่งภาพไปยัง ML Kit จะตรวจหาวัตถุในภาพได้สูงสุด 5 รายการ พร้อมกับตำแหน่งของแต่ละวัตถุในรูปภาพ เมื่อตรวจพบวัตถุใน สตรีมวิดีโอ โดยออบเจ็กต์แต่ละรายการจะมีรหัสที่ไม่ซ้ำกันซึ่งใช้ติดตามออบเจ็กต์ได้ จากเฟรมหนึ่งไปอีกเฟรม
คุณสามารถใช้โมเดลการจัดประเภทรูปภาพที่กำหนดเองเพื่อจัดประเภทออบเจ็กต์ที่ ตรวจพบ โปรดดูข้อมูลที่หัวข้อรุ่นที่กำหนดเองด้วย ML Kit สำหรับ คำแนะนำเกี่ยวกับข้อกำหนดความเข้ากันได้ของโมเดล วิธีค้นหาโมเดลก่อนการฝึก และวิธีฝึกโมเดลของคุณเอง
มี 2 วิธีในการรวมโมเดลที่กำหนดเอง คุณสามารถรวมกลุ่มโมเดลได้โดย ใส่ลงในโฟลเดอร์เนื้อหาของแอป หรือคุณจะดาวน์โหลดแบบไดนามิกก็ได้ จาก Firebase ตารางต่อไปนี้จะเปรียบเทียบทั้ง 2 ตัวเลือก
โมเดลแบบกลุ่ม | โมเดลที่โฮสต์ |
---|---|
โมเดลนี้เป็นส่วนหนึ่งของไฟล์ .ipa ของแอป
ทำให้ใหญ่ขึ้น |
โมเดลนี้ไม่ได้เป็นส่วนหนึ่งของไฟล์ .ipa ของแอป ใช่เลย
โฮสต์โดยอัปโหลดไปยัง
แมชชีนเลิร์นนิงของ Firebase |
โมเดลดังกล่าวจะพร้อมใช้งานทันที แม้ว่าอุปกรณ์ Android จะออฟไลน์อยู่ | โมเดลจะดาวน์โหลดแบบออนดีมานด์ |
ไม่จำเป็นต้องมีโปรเจ็กต์ Firebase | ต้องมีโปรเจ็กต์ Firebase |
คุณต้องเผยแพร่แอปอีกครั้งเพื่ออัปเดตโมเดล | พุชการอัปเดตโมเดลโดยไม่เผยแพร่แอปซ้ำ |
ไม่มีการทดสอบ A/B ในตัว | การทดสอบ A/B ที่ง่ายดายด้วยการกำหนดค่าระยะไกลของ Firebase |
ลองเลย
- ดูแอป Vision Quickstart สำหรับตัวอย่างการใช้งานโมเดล Bundle และ แอปการเริ่มต้นอย่างรวดเร็วของ automl สำหรับ ตัวอย่างการใช้โมเดลที่โฮสต์
- ดูการจัดแสดงดีไซน์ Material สำหรับการติดตั้งใช้งาน API นี้แบบครบวงจร
ก่อนเริ่มต้น
รวมไลบรารี ML Kit ไว้ใน Podfile ดังนี้
สำหรับการรวมโมเดลกับแอป ให้ทำดังนี้
pod 'GoogleMLKit/ObjectDetectionCustom', '15.5.0'
สำหรับการดาวน์โหลดโมเดลแบบไดนามิกจาก Firebase ให้เพิ่ม
LinkFirebase
การพึ่งพา:pod 'GoogleMLKit/ObjectDetectionCustom', '15.5.0' pod 'GoogleMLKit/LinkFirebase', '15.5.0'
หลังจากติดตั้งหรืออัปเดตพ็อดของโปรเจ็กต์แล้ว ให้เปิดโปรเจ็กต์ Xcode โดยใช้
.xcworkspace
รองรับ ML Kit ใน Xcode เวอร์ชัน 13.2.1 หรือสูงกว่าหากต้องการดาวน์โหลดโมเดล โปรดตรวจสอบว่า เพิ่ม Firebase ลงในโปรเจ็กต์ iOS หากคุณยังไม่ได้ดำเนินการ ไม่จำเป็นต้องทำขั้นตอนนี้เมื่อคุณรวมชุด โมเดล
1. โหลดโมเดล
กำหนดค่าต้นทางของโมเดลในเครื่อง
วิธีการรวมโมเดลกับแอปมีดังนี้
คัดลอกไฟล์โมเดล (โดยปกติจะลงท้ายด้วย
.tflite
หรือ.lite
) ไปยัง Xcode ให้เลือกCopy bundle resources
เมื่อคุณดำเนินการดังกล่าว ไฟล์โมเดลจะรวมอยู่ใน App Bundle และพร้อมใช้งานสำหรับ ML Kitสร้างออบเจ็กต์
LocalModel
โดยระบุเส้นทางไปยังไฟล์โมเดลSwift
let localModel = LocalModel(path: localModelFilePath)
Objective-C
MLKLocalModel *localModel = [[MLKLocalModel alloc] initWithPath:localModelFilePath];
กำหนดค่าแหล่งที่มาของโมเดลที่โฮสต์กับ Firebase
หากต้องการใช้โมเดลที่โฮสต์จากระยะไกล ให้สร้างออบเจ็กต์ CustomRemoteModel
ระบุชื่อที่คุณกำหนดให้กับโมเดลเมื่อเผยแพร่โมเดล:
Swift
let firebaseModelSource = FirebaseModelSource( name: "your_remote_model") // The name you assigned in // the Firebase console. let remoteModel = CustomRemoteModel(remoteModelSource: firebaseModelSource)
Objective-C
MLKFirebaseModelSource *firebaseModelSource = [[MLKFirebaseModelSource alloc] initWithName:@"your_remote_model"]; // The name you assigned in // the Firebase console. MLKCustomRemoteModel *remoteModel = [[MLKCustomRemoteModel alloc] initWithRemoteModelSource:firebaseModelSource];
จากนั้นเริ่มงานดาวน์โหลดโมเดล โดยระบุเงื่อนไขที่ ที่คุณต้องการอนุญาตให้ดาวน์โหลด หากไม่มีรุ่นนี้อยู่ในอุปกรณ์ หรือรุ่นที่ใหม่กว่า ของโมเดลพร้อมใช้งาน งานจะดาวน์โหลด จาก Firebase ได้ดังนี้
Swift
let downloadConditions = ModelDownloadConditions( allowsCellularAccess: true, allowsBackgroundDownloading: true ) let downloadProgress = ModelManager.modelManager().download( remoteModel, conditions: downloadConditions )
Objective-C
MLKModelDownloadConditions *downloadConditions = [[MLKModelDownloadConditions alloc] initWithAllowsCellularAccess:YES allowsBackgroundDownloading:YES]; NSProgress *downloadProgress = [[MLKModelManager modelManager] downloadModel:remoteModel conditions:downloadConditions];
แอปจำนวนมากเริ่มงานดาวน์โหลดในโค้ดเริ่มต้น แต่คุณ จากนั้นคุณจะสามารถทำได้ทุกเมื่อก่อนที่จะต้องใช้โมเดลนี้
2. กำหนดค่าตัวตรวจจับออบเจ็กต์
หลังจากคุณกำหนดค่าแหล่งที่มาของโมเดล ให้กำหนดค่าตัวตรวจจับออบเจ็กต์สำหรับ
Use Case กับออบเจ็กต์ CustomObjectDetectorOptions
คุณสามารถเปลี่ยน
การตั้งค่าต่อไปนี้:
การตั้งค่าตัวตรวจจับวัตถุ | |
---|---|
โหมดการตรวจจับ |
STREAM_MODE (ค่าเริ่มต้น) | วันที่ SINGLE_IMAGE_MODE
ใน ใน |
ตรวจหาและติดตามวัตถุหลายรายการ |
false (ค่าเริ่มต้น) | วันที่ true
สามารถตรวจจับและติดตามวัตถุได้สูงสุด 5 รายการ หรือเฉพาะวัตถุที่พบมากที่สุด ออบเจ็กต์ที่โดดเด่น (ค่าเริ่มต้น) |
จำแนกประเภทวัตถุ |
false (ค่าเริ่มต้น) | วันที่ true
แยกประเภทออบเจ็กต์ที่ตรวจพบโดยใช้ข้อมูลที่ระบุหรือไม่
โมเดลตัวแยกประเภทที่กำหนดเอง วิธีใช้การแยกประเภทที่กำหนดเอง
คุณต้องตั้งค่าเป็น |
เกณฑ์ความเชื่อมั่นในการจัดประเภท |
คะแนนความเชื่อมั่นขั้นต่ำของป้ายกำกับที่ตรวจพบ หากไม่ได้ตั้งค่าไว้ รายการใดรายการหนึ่ง จะมีการใช้เกณฑ์ตัวแยกประเภทที่ระบุโดยข้อมูลเมตาของโมเดล ถ้าโมเดลไม่มีข้อมูลเมตาหรือข้อมูลเมตาไม่มี ระบุเกณฑ์ของตัวแยกประเภท โดยเกณฑ์เริ่มต้นที่มีค่าเท่ากับ 0.0 |
ป้ายกำกับสูงสุดต่อออบเจ็กต์ |
จำนวนป้ายกำกับสูงสุดต่อออบเจ็กต์ที่ตัวตรวจจับจะ ผลตอบแทน หากไม่ได้ตั้งค่า ระบบจะใช้ค่าเริ่มต้น 10 |
หากคุณมีเฉพาะโมเดลที่รวมในเครื่อง ให้สร้างตัวตรวจจับวัตถุจาก
ออบเจ็กต์ LocalModel
ของคุณ:
Swift
let options = CustomObjectDetectorOptions(localModel: localModel) options.detectorMode = .singleImage options.shouldEnableClassification = true options.shouldEnableMultipleObjects = true options.classificationConfidenceThreshold = NSNumber(value: 0.5) options.maxPerObjectLabelCount = 3
Objective-C
MLKCustomObjectDetectorOptions *options = [[MLKCustomObjectDetectorOptions alloc] initWithLocalModel:localModel]; options.detectorMode = MLKObjectDetectorModeSingleImage; options.shouldEnableClassification = YES; options.shouldEnableMultipleObjects = YES; options.classificationConfidenceThreshold = @(0.5); options.maxPerObjectLabelCount = 3;
หากคุณมีโมเดลที่โฮสต์จากระยะไกล คุณจะต้องตรวจสอบว่ามีการ
ซึ่งดาวน์โหลดมาก่อนที่จะเรียกใช้ คุณตรวจสอบสถานะการดาวน์โหลดโมเดลได้
โดยใช้เมธอด isModelDownloaded(remoteModel:)
ของผู้จัดการโมเดล
ถึงแม้ว่าคุณจะต้องยืนยันเรื่องนี้ก่อนที่จะเรียกใช้ตัวตรวจจับวัตถุ แต่ถ้า
คุณจะมีทั้งโมเดลที่โฮสต์จากระยะไกลและโมเดลที่รวมอยู่ภายในเครื่องอาจทำให้
เหมาะสมที่จะดำเนินการตรวจสอบนี้เมื่อเริ่มต้น ObjectDetector
: สร้าง
ตัวตรวจจับจากโมเดลระยะไกล หากดาวน์โหลดแล้ว และจากโมเดลในเครื่อง
หรือไม่เช่นนั้น
Swift
var options: CustomObjectDetectorOptions! if (ModelManager.modelManager().isModelDownloaded(remoteModel)) { options = CustomObjectDetectorOptions(remoteModel: remoteModel) } else { options = CustomObjectDetectorOptions(localModel: localModel) } options.detectorMode = .singleImage options.shouldEnableClassification = true options.shouldEnableMultipleObjects = true options.classificationConfidenceThreshold = NSNumber(value: 0.5) options.maxPerObjectLabelCount = 3
Objective-C
MLKCustomObjectDetectorOptions *options; if ([[MLKModelManager modelManager] isModelDownloaded:remoteModel]) { options = [[MLKCustomObjectDetectorOptions alloc] initWithRemoteModel:remoteModel]; } else { options = [[MLKCustomObjectDetectorOptions alloc] initWithLocalModel:localModel]; } options.detectorMode = MLKObjectDetectorModeSingleImage; options.shouldEnableClassification = YES; options.shouldEnableMultipleObjects = YES; options.classificationConfidenceThreshold = @(0.5); options.maxPerObjectLabelCount = 3;
หากคุณมีเฉพาะโมเดลที่โฮสต์จากระยะไกล คุณควรปิดใช้โมเดลที่เกี่ยวข้องกับ ตัวอย่างเช่น เป็นสีเทาหรือซ่อนบางส่วนของ UI จนถึง คุณยืนยันว่าดาวน์โหลดโมเดลแล้ว
คุณดูสถานะการดาวน์โหลดโมเดลได้โดยการแนบผู้สังเกตการณ์กับค่าเริ่มต้น
ศูนย์การแจ้งเตือน โปรดใช้การอ้างอิงที่ไม่รัดกุมไปยัง self
ในผู้สังเกตการณ์
บล็อก เนื่องจากการดาวน์โหลดอาจใช้เวลาสักครู่ และออบเจ็กต์เริ่มต้นอาจ
เมื่อการดาวน์โหลดเสร็จสิ้น เช่น
Swift
NotificationCenter.default.addObserver( forName: .mlkitModelDownloadDidSucceed, object: nil, queue: nil ) { [weak self] notification in guard let strongSelf = self, let userInfo = notification.userInfo, let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue] as? RemoteModel, model.name == "your_remote_model" else { return } // The model was downloaded and is available on the device } NotificationCenter.default.addObserver( forName: .mlkitModelDownloadDidFail, object: nil, queue: nil ) { [weak self] notification in guard let strongSelf = self, let userInfo = notification.userInfo, let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue] as? RemoteModel else { return } let error = userInfo[ModelDownloadUserInfoKey.error.rawValue] // ... }
Objective-C
__weak typeof(self) weakSelf = self; [NSNotificationCenter.defaultCenter addObserverForName:MLKModelDownloadDidSucceedNotification object:nil queue:nil usingBlock:^(NSNotification *_Nonnull note) { if (weakSelf == nil | note.userInfo == nil) { return; } __strong typeof(self) strongSelf = weakSelf; MLKRemoteModel *model = note.userInfo[MLKModelDownloadUserInfoKeyRemoteModel]; if ([model.name isEqualToString:@"your_remote_model"]) { // The model was downloaded and is available on the device } }]; [NSNotificationCenter.defaultCenter addObserverForName:MLKModelDownloadDidFailNotification object:nil queue:nil usingBlock:^(NSNotification *_Nonnull note) { if (weakSelf == nil | note.userInfo == nil) { return; } __strong typeof(self) strongSelf = weakSelf; NSError *error = note.userInfo[MLKModelDownloadUserInfoKeyError]; }];
API การติดตามและตรวจจับออบเจ็กต์ได้รับการเพิ่มประสิทธิภาพสำหรับการใช้งานหลัก 2 รายการนี้ กรณี:
- การตรวจจับแบบเรียลไทม์และการติดตามวัตถุที่โดดเด่นที่สุดในกล้อง ช่องมองภาพ
- การตรวจจับวัตถุหลายรายการจากภาพนิ่ง
วิธีกำหนดค่า API สำหรับกรณีการใช้งานเหล่านี้
Swift
// Live detection and tracking let options = CustomObjectDetectorOptions(localModel: localModel) options.shouldEnableClassification = true options.maxPerObjectLabelCount = 3 // Multiple object detection in static images let options = CustomObjectDetectorOptions(localModel: localModel) options.detectorMode = .singleImage options.shouldEnableMultipleObjects = true options.shouldEnableClassification = true options.maxPerObjectLabelCount = 3
Objective-C
// Live detection and tracking MLKCustomObjectDetectorOptions *options = [[MLKCustomObjectDetectorOptions alloc] initWithLocalModel:localModel]; options.shouldEnableClassification = YES; options.maxPerObjectLabelCount = 3; // Multiple object detection in static images MLKCustomObjectDetectorOptions *options = [[MLKCustomObjectDetectorOptions alloc] initWithLocalModel:localModel]; options.detectorMode = MLKObjectDetectorModeSingleImage; options.shouldEnableMultipleObjects = YES; options.shouldEnableClassification = YES; options.maxPerObjectLabelCount = 3;
3. เตรียมรูปภาพอินพุต
สร้างออบเจ็กต์ VisionImage
โดยใช้ UIImage
หรือ
CMSampleBuffer
หากคุณใช้ UIImage
ให้ทำตามขั้นตอนต่อไปนี้
- สร้างออบเจ็กต์
VisionImage
ด้วยUIImage
ตรวจสอบว่าได้ระบุ.orientation
ที่ถูกต้องSwift
let image = VisionImage(image: UIImage) visionImage.orientation = image.imageOrientation
Objective-C
MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image]; visionImage.orientation = image.imageOrientation;
หากคุณใช้ CMSampleBuffer
ให้ทำตามขั้นตอนต่อไปนี้
-
ระบุการวางแนวของข้อมูลภาพที่มีอยู่ใน
CMSampleBuffer
วิธีดูการวางแนวรูปภาพ
Swift
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> UIImage.Orientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftMirrored : .right case .landscapeLeft: return cameraPosition == .front ? .downMirrored : .up case .portraitUpsideDown: return cameraPosition == .front ? .rightMirrored : .left case .landscapeRight: return cameraPosition == .front ? .upMirrored : .down case .faceDown, .faceUp, .unknown: return .up } }
Objective-C
- (UIImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored : UIImageOrientationRight; case UIDeviceOrientationLandscapeLeft: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored : UIImageOrientationUp; case UIDeviceOrientationPortraitUpsideDown: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored : UIImageOrientationLeft; case UIDeviceOrientationLandscapeRight: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored : UIImageOrientationDown; case UIDeviceOrientationUnknown: case UIDeviceOrientationFaceUp: case UIDeviceOrientationFaceDown: return UIImageOrientationUp; } }
- สร้างออบเจ็กต์
VisionImage
โดยใช้CMSampleBuffer
วัตถุและการวางแนว:Swift
let image = VisionImage(buffer: sampleBuffer) image.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition)
Objective-C
MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer]; image.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
4. สร้างและเรียกใช้ตัวตรวจจับวัตถุ
สร้างตัวตรวจจับวัตถุใหม่ โดยทำดังนี้
Swift
let objectDetector = ObjectDetector.objectDetector(options: options)
Objective-C
MLKObjectDetector *objectDetector = [MLKObjectDetector objectDetectorWithOptions:options];
จากนั้นใช้ตัวตรวจจับโดยทำดังนี้
ไม่พร้อมกัน:
Swift
objectDetector.process(image) { objects, error in guard error == nil, let objects = objects, !objects.isEmpty else { // Handle the error. return } // Show results. }
Objective-C
[objectDetector processImage:image completion:^(NSArray
*_Nullable objects, NSError *_Nullable error) { if (objects.count == 0) { // Handle the error. return; } // Show results. }]; พร้อมกัน:
Swift
var objects: [Object] do { objects = try objectDetector.results(in: image) } catch let error { // Handle the error. return } // Show results.
Objective-C
NSError *error; NSArray
*objects = [objectDetector resultsInImage:image error:&error]; // Show results or handle the error.
5. รับข้อมูลเกี่ยวกับออบเจ็กต์ที่ติดป้ายกำกับ
หากการเรียกใช้โปรแกรมประมวลผลรูปภาพสำเร็จ โปรแกรมดังกล่าวจะมีการส่งรายการ
Object
วินาทีไปยังตัวแฮนเดิลการเสร็จสมบูรณ์หรือส่งกลับรายการ ทั้งนี้ขึ้นอยู่
ไม่ว่าคุณจะเรียกใช้เมธอด
แบบอะซิงโครนัสหรือซิงโครนัส
Object
แต่ละรายการจะมีพร็อพเพอร์ตี้ต่อไปนี้
frame |
CGRect ที่ระบุตำแหน่งของออบเจ็กต์ในส่วน
รูปภาพ |
||||||
trackingID |
จำนวนเต็มที่ระบุออบเจ็กต์ในรูปภาพ หรือ "nil" ใน SINGLE_IMAGE_mode | ||||||
labels |
|
Swift
// objects contains one item if multiple object detection wasn't enabled. for object in objects { let frame = object.frame let trackingID = object.trackingID let description = object.labels.enumerated().map { (index, label) in "Label \(index): \(label.text), \(label.confidence), \(label.index)" }.joined(separator: "\n") }
Objective-C
// The list of detected objects contains one item if multiple object detection // wasn't enabled. for (MLKObject *object in objects) { CGRect frame = object.frame; NSNumber *trackingID = object.trackingID; for (MLKObjectLabel *label in object.labels) { NSString *labelString = [NSString stringWithFormat:@"%@, %f, %lu", label.text, label.confidence, (unsigned long)label.index]; } }
สร้างประสบการณ์ของผู้ใช้ที่ดี
โปรดปฏิบัติตามหลักเกณฑ์ต่อไปนี้ในแอปเพื่อให้ผู้ใช้ได้รับประสบการณ์ที่ดีที่สุด
- การตรวจจับออบเจ็กต์ที่ประสบความสำเร็จขึ้นอยู่กับความซับซ้อนของภาพของออบเจ็กต์ ใน วัตถุที่มีคุณลักษณะทางภาพจำนวนน้อยอาจต้องให้ตรวจจับได้ เพื่อใช้ส่วนที่ใหญ่กว่าของรูปภาพ คุณควรให้คำแนะนำแก่ผู้ใช้เกี่ยวกับ ซึ่งเหมาะสำหรับวัตถุที่ต้องการตรวจจับ
- เมื่อใช้การจำแนกประเภท หากต้องการตรวจหาวัตถุที่ไม่ตก อยู่ในหมวดหมู่ที่สนับสนุนอย่างชัดเจน ใช้การจัดการพิเศษสำหรับสิ่งที่ไม่ทราบ ออบเจ็กต์
นอกจากนี้ คุณยังดู [แอปจัดแสดงดีไซน์ Material ของ ML Kit][showcase-link]{: .external} และ ดีไซน์ Material คอลเล็กชันรูปแบบของฟีเจอร์ที่ขับเคลื่อนด้วยแมชชีนเลิร์นนิง
Improving performance
หากคุณต้องการใช้การตรวจหาออบเจ็กต์ในแอปพลิเคชันแบบเรียลไทม์ ให้ทำตามสิ่งต่อไปนี้ เพื่อให้ได้อัตราเฟรมที่ดีที่สุดอย่าใช้โหมดสตรีมมิงในแอปพลิเคชันแบบเรียลไทม์ การตรวจจับวัตถุ เนื่องจากอุปกรณ์ส่วนใหญ่จะไม่สามารถสร้างอัตราเฟรมที่เพียงพอ
- สำหรับการประมวลผลเฟรมวิดีโอ ให้ใช้ API แบบซิงโครนัสของ
results(in:)
ในตัวตรวจจับ โทร เมธอดนี้จาก ของAVCaptureVideoDataOutputSampleBufferDelegate
captureOutput(_, didOutput:from:)
เพื่อให้ได้ผลลัพธ์จากวิดีโอที่ระบุแบบพร้อมกัน เฟรม เก็บ ของAVCaptureVideoDataOutput
alwaysDiscardsLateVideoFrames
เป็นtrue
เพื่อควบคุมการโทรหาตัวตรวจจับ หาก เฟรมวิดีโอจะพร้อมใช้งานขณะที่ตัวตรวจจับทำงานอยู่ เฟรมนั้นจะหายไป - หากคุณใช้เอาต์พุตของเครื่องมือตรวจจับเพื่อวางซ้อนกราฟิก รูปภาพอินพุต รับผลลัพธ์จาก ML Kit ก่อน จากนั้นจึงแสดงผลรูปภาพ ซ้อนทับในขั้นตอนเดียว การดำเนินการดังกล่าวจะแสดงบนพื้นผิวจอแสดงผล เพียงครั้งเดียวสำหรับแต่ละเฟรมอินพุตที่ประมวลผลแล้ว ดู updatePreviewOverlayViewWithLastFrame ในตัวอย่างการเริ่มต้นอย่างรวดเร็วใน ML Kit