ML Kit には、姿勢検出用に最適化された 2 つの SDK が用意されています。
<ph type="x-smartling-placeholder">SDK 名 | pose-detection | pose-detection-accurate |
---|---|---|
実装 | コードとアセットは、ビルド時にアプリに静的にリンクされます。 | コードとアセットは、ビルド時にアプリに静的にリンクされます。 |
アプリサイズへの影響(コードとアセットを含む) | ~ 10.1 MB | ~ 13.3 MB |
パフォーマンス | Google Pixel 3XL: ~ 30 FPS | Google Pixel 3XL: CPU で最大 23 FPS、GPU で最大 30 FPS |
試してみる
- サンプルアプリを試してみましょう。 この API の使用例をご覧ください
始める前に
<ph type="x-smartling-placeholder">- プロジェクト レベルの
build.gradle
ファイルで、buildscript
セクションとallprojects
セクションの両方に Google の Maven リポジトリを組み込みます。 ML Kit Android ライブラリの依存関係をモジュールのアプリレベルの Gradle ファイル(通常は
app/build.gradle
)に追加します。dependencies { // If you want to use the base sdk implementation 'com.google.mlkit:pose-detection:18.0.0-beta5' // If you want to use the accurate sdk implementation 'com.google.mlkit:pose-detection-accurate:18.0.0-beta5' }
1. PoseDetector
のインスタンスを作成する
PoseDetector
のオプション
画像内のポーズを検出するには、まず PoseDetector
のインスタンスを作成し、
(省略可)検出項目の設定を指定します。
検出モード
PoseDetector
は、2 つの検出モードで動作します。必ず一致するものを選択してください
選択できます。
STREAM_MODE
(デフォルト)- 姿勢検出機能は、まず最も大きい 使用して姿勢検出を実行します。後続のフレームでは 人物検知ステップは、その人物が 検出されなくなったり、高い信頼度で検出されなくなったりした場合です。姿勢検出機能が 最も目立つ人物を追跡し、それぞれのポーズでポーズをとって 説明します。これにより遅延が減少し、検出がスムーズになります。このモードは、 検出したい場合に使用します。
SINGLE_IMAGE_MODE
- 姿勢検出器が人物を検出し、ポーズを実行します できます。人物検出ステップは画像ごとに実行されるため、レイテンシは 人物の追跡も行われませんポーズの使用時にこのモードを使用します 静的画像やトラッキングが不要な場合に 検出できます
ハードウェア構成
PoseDetector
は、最適化のために複数のハードウェア構成をサポートしています。
パフォーマンス:
CPU
: CPU のみを使用して検出を実行します。CPU_GPU
: CPU と GPU の両方を使用して検出機能を実行します。
検出機能のオプションを作成する場合は、API を使用して
setPreferredHardwareConfigs
: ハードウェアの選択を制御します。デフォルトでは
すべてのハードウェア構成が優先として設定されます。
ML Kit では、各構成の可用性、安定性、正確性、レイテンシが取得されます。
推奨される構成の中から最適なものを選択します。上記のいずれでもない場合
優先構成が適用されると、CPU
構成が自動的に使用されます
使用されますML Kit では、これらのチェックとそれに関連する準備を
アクセラレーションを有効にする前に、ブロッキングしない方法であるため、
ユーザーが初めて検出機能を実行するときは、CPU
が使用されます。結局のところ、
次の実行では、最適な構成が使用されます。
setPreferredHardwareConfigs
の使用例:
- ML Kit が最適な構成を選択できるようにするには、この API を呼び出さないでください。
- アクセラレーションを有効にしない場合は、
CPU
のみを渡します。 - GPU の速度が低下する可能性がある場合でも GPU を使用して CPU をオフロードする場合は、
わずか
CPU_GPU
で。
姿勢検出器のオプションを指定します。
Kotlin
// Base pose detector with streaming frames, when depending on the pose-detection sdk val options = PoseDetectorOptions.Builder() .setDetectorMode(PoseDetectorOptions.STREAM_MODE) .build() // Accurate pose detector on static images, when depending on the pose-detection-accurate sdk val options = AccuratePoseDetectorOptions.Builder() .setDetectorMode(AccuratePoseDetectorOptions.SINGLE_IMAGE_MODE) .build()
Java
// Base pose detector with streaming frames, when depending on the pose-detection sdk PoseDetectorOptions options = new PoseDetectorOptions.Builder() .setDetectorMode(PoseDetectorOptions.STREAM_MODE) .build(); // Accurate pose detector on static images, when depending on the pose-detection-accurate sdk AccuratePoseDetectorOptions options = new AccuratePoseDetectorOptions.Builder() .setDetectorMode(AccuratePoseDetectorOptions.SINGLE_IMAGE_MODE) .build();
最後に、PoseDetector
のインスタンスを作成します。指定したオプションを渡します。
Kotlin
val poseDetector = PoseDetection.getClient(options)
Java
PoseDetector poseDetector = PoseDetection.getClient(options);
2. 入力画像を準備する
画像内のポーズを検出するには、InputImage
オブジェクトを作成します。
Bitmap
、media.Image
、ByteBuffer
、バイト配列、または
クリックします。次に、InputImage
オブジェクトを
PoseDetector
。
姿勢検出には、次のサイズ以上の画像を使用する必要があります。 480x360 ピクセル。リアルタイムでポーズを検出している場合は、フレームのキャプチャ レイテンシを短縮できます。
InputImage
を作成できます。
異なるソースからのオブジェクトについて、以下で説明します。
media.Image
の使用
InputImage
を作成するには:
media.Image
オブジェクトからオブジェクトをキャプチャします。たとえば、
渡すには、media.Image
オブジェクトと画像の
InputImage.fromMediaImage()
に変更します。
「
<ph type="x-smartling-placeholder"></ph>
CameraX ライブラリ、OnImageCapturedListener
、
ImageAnalysis.Analyzer
クラスが回転値を計算する
できます。
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
画像の回転角度を取得するカメラ ライブラリを使用しない場合は、 デバイスの回転角度とカメラの向きから計算できます。 次の動作を行います。
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
次に、media.Image
オブジェクトと
回転角度の値を InputImage.fromMediaImage()
に設定する:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
ファイル URI の使用
InputImage
を作成するには:
渡すことにより、アプリのコンテキストとファイルの URI を
InputImage.fromFilePath()
。これは、
ACTION_GET_CONTENT
インテントを使用してユーザーに選択を求める
ギャラリーアプリから画像を作成できます
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
ByteBuffer
または ByteArray
の使用
InputImage
を作成するには:
作成するには、まず画像を計算してByteBuffer
ByteArray
前述の media.Image
入力に対する回転角度。
次に、バッファまたは配列を含む InputImage
オブジェクトを、画像の
高さ、幅、カラー エンコード形式、回転角度:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Bitmap
の使用
InputImage
を作成するには:
Bitmap
オブジェクトから呼び出す場合は、次のように宣言します。
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
画像は、Bitmap
オブジェクトと回転角度で表されます。
3. 画像を処理する
準備した InputImage
オブジェクトを PoseDetector
の process
メソッドに渡します。
Kotlin
Task<Pose> result = poseDetector.process(image) .addOnSuccessListener { results -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<Pose> result = poseDetector.process(image) .addOnSuccessListener( new OnSuccessListener<Pose>() { @Override public void onSuccess(Pose pose) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. 検出された姿勢に関する情報を取得する
画像内で人物が検出されると、ポーズ検出 API が Pose
を返します。
33 個の PoseLandmark
を持つオブジェクト。
人物が画像に完全に収まっていない場合、モデルは 足りないランドマークの座標がフレームの外側に InFrameConfidence 値。
フレーム内に人物が検出されなかった場合、Pose
オブジェクトに PoseLandmark
が含まれない。
Kotlin
// Get all PoseLandmarks. If no person was detected, the list will be empty val allPoseLandmarks = pose.getAllPoseLandmarks() // Or get specific PoseLandmarks individually. These will all be null if no person // was detected val leftShoulder = pose.getPoseLandmark(PoseLandmark.LEFT_SHOULDER) val rightShoulder = pose.getPoseLandmark(PoseLandmark.RIGHT_SHOULDER) val leftElbow = pose.getPoseLandmark(PoseLandmark.LEFT_ELBOW) val rightElbow = pose.getPoseLandmark(PoseLandmark.RIGHT_ELBOW) val leftWrist = pose.getPoseLandmark(PoseLandmark.LEFT_WRIST) val rightWrist = pose.getPoseLandmark(PoseLandmark.RIGHT_WRIST) val leftHip = pose.getPoseLandmark(PoseLandmark.LEFT_HIP) val rightHip = pose.getPoseLandmark(PoseLandmark.RIGHT_HIP) val leftKnee = pose.getPoseLandmark(PoseLandmark.LEFT_KNEE) val rightKnee = pose.getPoseLandmark(PoseLandmark.RIGHT_KNEE) val leftAnkle = pose.getPoseLandmark(PoseLandmark.LEFT_ANKLE) val rightAnkle = pose.getPoseLandmark(PoseLandmark.RIGHT_ANKLE) val leftPinky = pose.getPoseLandmark(PoseLandmark.LEFT_PINKY) val rightPinky = pose.getPoseLandmark(PoseLandmark.RIGHT_PINKY) val leftIndex = pose.getPoseLandmark(PoseLandmark.LEFT_INDEX) val rightIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_INDEX) val leftThumb = pose.getPoseLandmark(PoseLandmark.LEFT_THUMB) val rightThumb = pose.getPoseLandmark(PoseLandmark.RIGHT_THUMB) val leftHeel = pose.getPoseLandmark(PoseLandmark.LEFT_HEEL) val rightHeel = pose.getPoseLandmark(PoseLandmark.RIGHT_HEEL) val leftFootIndex = pose.getPoseLandmark(PoseLandmark.LEFT_FOOT_INDEX) val rightFootIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_FOOT_INDEX) val nose = pose.getPoseLandmark(PoseLandmark.NOSE) val leftEyeInner = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_INNER) val leftEye = pose.getPoseLandmark(PoseLandmark.LEFT_EYE) val leftEyeOuter = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_OUTER) val rightEyeInner = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_INNER) val rightEye = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE) val rightEyeOuter = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_OUTER) val leftEar = pose.getPoseLandmark(PoseLandmark.LEFT_EAR) val rightEar = pose.getPoseLandmark(PoseLandmark.RIGHT_EAR) val leftMouth = pose.getPoseLandmark(PoseLandmark.LEFT_MOUTH) val rightMouth = pose.getPoseLandmark(PoseLandmark.RIGHT_MOUTH)
Java
// Get all PoseLandmarks. If no person was detected, the list will be empty List<PoseLandmark> allPoseLandmarks = pose.getAllPoseLandmarks(); // Or get specific PoseLandmarks individually. These will all be null if no person // was detected PoseLandmark leftShoulder = pose.getPoseLandmark(PoseLandmark.LEFT_SHOULDER); PoseLandmark rightShoulder = pose.getPoseLandmark(PoseLandmark.RIGHT_SHOULDER); PoseLandmark leftElbow = pose.getPoseLandmark(PoseLandmark.LEFT_ELBOW); PoseLandmark rightElbow = pose.getPoseLandmark(PoseLandmark.RIGHT_ELBOW); PoseLandmark leftWrist = pose.getPoseLandmark(PoseLandmark.LEFT_WRIST); PoseLandmark rightWrist = pose.getPoseLandmark(PoseLandmark.RIGHT_WRIST); PoseLandmark leftHip = pose.getPoseLandmark(PoseLandmark.LEFT_HIP); PoseLandmark rightHip = pose.getPoseLandmark(PoseLandmark.RIGHT_HIP); PoseLandmark leftKnee = pose.getPoseLandmark(PoseLandmark.LEFT_KNEE); PoseLandmark rightKnee = pose.getPoseLandmark(PoseLandmark.RIGHT_KNEE); PoseLandmark leftAnkle = pose.getPoseLandmark(PoseLandmark.LEFT_ANKLE); PoseLandmark rightAnkle = pose.getPoseLandmark(PoseLandmark.RIGHT_ANKLE); PoseLandmark leftPinky = pose.getPoseLandmark(PoseLandmark.LEFT_PINKY); PoseLandmark rightPinky = pose.getPoseLandmark(PoseLandmark.RIGHT_PINKY); PoseLandmark leftIndex = pose.getPoseLandmark(PoseLandmark.LEFT_INDEX); PoseLandmark rightIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_INDEX); PoseLandmark leftThumb = pose.getPoseLandmark(PoseLandmark.LEFT_THUMB); PoseLandmark rightThumb = pose.getPoseLandmark(PoseLandmark.RIGHT_THUMB); PoseLandmark leftHeel = pose.getPoseLandmark(PoseLandmark.LEFT_HEEL); PoseLandmark rightHeel = pose.getPoseLandmark(PoseLandmark.RIGHT_HEEL); PoseLandmark leftFootIndex = pose.getPoseLandmark(PoseLandmark.LEFT_FOOT_INDEX); PoseLandmark rightFootIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_FOOT_INDEX); PoseLandmark nose = pose.getPoseLandmark(PoseLandmark.NOSE); PoseLandmark leftEyeInner = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_INNER); PoseLandmark leftEye = pose.getPoseLandmark(PoseLandmark.LEFT_EYE); PoseLandmark leftEyeOuter = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_OUTER); PoseLandmark rightEyeInner = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_INNER); PoseLandmark rightEye = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE); PoseLandmark rightEyeOuter = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_OUTER); PoseLandmark leftEar = pose.getPoseLandmark(PoseLandmark.LEFT_EAR); PoseLandmark rightEar = pose.getPoseLandmark(PoseLandmark.RIGHT_EAR); PoseLandmark leftMouth = pose.getPoseLandmark(PoseLandmark.LEFT_MOUTH); PoseLandmark rightMouth = pose.getPoseLandmark(PoseLandmark.RIGHT_MOUTH);
パフォーマンスを向上させるためのヒント
結果の品質は入力画像の品質に依存します。
- ML Kit で姿勢を正確に検出するには、画像に写っている人物が 十分なピクセルデータで表される。サブジェクトを 256x256 ピクセル以上
- リアルタイム アプリケーションでポーズを検出する場合は、 入力画像の全体的なサイズ。小さい画像も処理できます より高速になります。レイテンシを短縮するには、画像を低解像度でキャプチャしますが、 上記の解決要件に留意し、 できるだけ大きな部分を占めるようにします
- 画像のピントが悪い場合も精度に影響することがあります。満足のいく結果が得られない場合は 画像をキャプチャし直すようお客様に伝えます。
リアルタイムのアプリケーションで姿勢検出を使用する場合は、以下のガイドラインに沿って最適なフレームレートを使用してください。
- ベースポーズ検出 SDK と
STREAM_MODE
を使用します。 - 解像度を下げて画像をキャプチャすることを検討してください。ただし、この API の画像サイズの要件にも留意してください。
- 「
Camera
またはcamera2
API、 スロットリングするように構成されています。新しい動画が フレームが使用可能になる場合は、そのフレームをドロップします。詳しくは、 <ph type="x-smartling-placeholder"></ph>VisionProcessorBase
クラスをご覧ください。 CameraX
API を使用する場合は、 バックプレッシャー戦略がデフォルト値に <ph type="x-smartling-placeholder"></ph>ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
。 これにより、分析のために一度に 1 つの画像のみが配信されるようになります。もしより多くの画像が 生成された場合、自動的に破棄され、 提供します。次の呼び出しによって分析中の画像を閉じたら、 ImageProxy.close() が呼び出されると、次に最新の画像が配信されます。- 検出機能の出力を使用して、ディスプレイにグラフィックをオーバーレイする場合、
まず ML Kit から結果を取得してから、画像をレンダリングする
1 ステップでオーバーレイできますこれにより、ディスプレイ サーフェスにレンダリングされます。
入力フレームごとに 1 回だけです。詳しくは、
<ph type="x-smartling-placeholder"></ph>
CameraSourcePreview
および <ph type="x-smartling-placeholder"></ph>GraphicOverlay
クラスをご覧ください。 - Camera2 API を使用する場合は、
ImageFormat.YUV_420_888
形式。古い Camera API を使用する場合は、ImageFormat.NV21
形式。
次のステップ
- ポーズ ランドマークを使用してポーズを分類する方法については、ポーズ分類のヒントをご覧ください。