Wykrywanie pozycji za pomocą ML Kit na Androidzie

ML Kit udostępnia 2 zoptymalizowane pakiety SDK do wykrywania póz.

Nazwa pakietu SDKpose-detectionpose-detection-accurate
ImplementacjaKod i zasoby są statycznie połączone z aplikacją w momencie jej tworzenia.Kod i zasoby są statycznie połączone z aplikacją w momencie jej tworzenia.
Wpływ na rozmiar aplikacji (w tym kod i komponenty)~10,1 MB~13,3 MB
WynikiPixel 3XL: ~30 kl./sPixel 3XL: ok. 23 kl./s z CPU, ok. 30 kl./s z GPU

Wypróbuj

Zanim zaczniesz

  1. W pliku build.gradle na poziomie projektu dodaj repozytorium Maven firmy Google do sekcji buildscriptallprojects.
  2. Dodaj zależności dla bibliotek ML Kit na Androida do pliku Gradle na poziomie aplikacji modułu, który zwykle znajduje się w tym miejscu: app/build.gradle

    dependencies {
      // If you want to use the base sdk
      implementation 'com.google.mlkit:pose-detection:18.0.0-beta5'
      // If you want to use the accurate sdk
      implementation 'com.google.mlkit:pose-detection-accurate:18.0.0-beta5'
    }
    

1. Tworzenie instancji PoseDetector

Opcje: PoseDetector

Aby wykryć pozę na obrazie, najpierw utwórz instancję PoseDetector i opcjonalnie określ ustawienia detektora.

Tryb wykrywania

PoseDetector działa w 2 trybach wykrywania. Wybierz ten, który pasuje do Twojego przypadku użycia.

STREAM_MODE (domyślnie)
Detektor postawy najpierw wykryje najbardziej widoczną osobę na obrazie, a potem przeprowadzi wykrywanie postawy. W kolejnych klatkach krok wykrywania osoby nie będzie wykonywany, chyba że osoba zostanie zasłonięta lub nie będzie już wykrywana z wysoką pewnością. Detektor postawy będzie próbował śledzić najbardziej widoczną osobę i zwracać jej postawę w każdej inferencji. Pozwala to zmniejszyć opóźnienia i usprawnić wykrywanie. Użyj tego trybu, gdy chcesz wykrywać pozę w strumieniu wideo.
SINGLE_IMAGE_MODE
Detektor postawy wykryje osobę, a następnie przeprowadzi wykrywanie postawy. Krok wykrywania osób będzie wykonywany w przypadku każdego obrazu, więc opóźnienie będzie większe, a śledzenie osób nie będzie możliwe. Używaj tego trybu, gdy korzystasz z wykrywania pozy na statycznych obrazach lub gdy śledzenie nie jest pożądane.

Konfiguracja sprzętu

PoseDetector obsługuje wiele konfiguracji sprzętowych, które optymalizują wydajność:

  • CPU: uruchomienie detektora tylko przy użyciu procesora;
  • CPU_GPU: uruchom detektor, korzystając z procesora i procesora graficznego;

Podczas tworzenia opcji detektora możesz użyć interfejsu APIsetPreferredHardwareConfigs, aby kontrolować wybór sprzętu. Domyślnie wszystkie konfiguracje sprzętowe są ustawione jako preferowane.

ML Kit weźmie pod uwagę dostępność, stabilność, poprawność i opóźnienie każdej konfiguracji i wybierze najlepszą z preferowanych konfiguracji. Jeśli żadna z preferowanych konfiguracji nie ma zastosowania, automatycznie zostanie użyta konfiguracja CPU jako konfiguracja zastępcza. ML Kit przeprowadzi te kontrole i powiązane przygotowania w sposób nieblokujący przed włączeniem jakiegokolwiek przyspieszenia, więc najprawdopodobniej za pierwszym razem, gdy użytkownik uruchomi detektor, będzie on korzystać z CPU. Po zakończeniu wszystkich przygotowań najlepsza konfiguracja będzie używana w kolejnych uruchomieniach.

Przykłady użycia setPreferredHardwareConfigs:

  • Aby ML Kit mógł wybrać najlepszą konfigurację, nie wywołuj tego interfejsu API.
  • Jeśli nie chcesz włączyć żadnej akceleracji, przekaż tylko wartość CPU.
  • Jeśli chcesz używać GPU do odciążania procesora, nawet jeśli GPU może działać wolniej, przekaż tylko CPU_GPU.

Określ opcje detektora pozycji:

Kotlin

// Base pose detector with streaming frames, when depending on the pose-detection sdk
val options = PoseDetectorOptions.Builder()
    .setDetectorMode(PoseDetectorOptions.STREAM_MODE)
    .build()

// Accurate pose detector on static images, when depending on the pose-detection-accurate sdk
val options = AccuratePoseDetectorOptions.Builder()
    .setDetectorMode(AccuratePoseDetectorOptions.SINGLE_IMAGE_MODE)
    .build()

Java

// Base pose detector with streaming frames, when depending on the pose-detection sdk
PoseDetectorOptions options =
   new PoseDetectorOptions.Builder()
       .setDetectorMode(PoseDetectorOptions.STREAM_MODE)
       .build();

// Accurate pose detector on static images, when depending on the pose-detection-accurate sdk
AccuratePoseDetectorOptions options =
   new AccuratePoseDetectorOptions.Builder()
       .setDetectorMode(AccuratePoseDetectorOptions.SINGLE_IMAGE_MODE)
       .build();

Na koniec utwórz instancję PoseDetector. Przekaż określone opcje:

Kotlin

val poseDetector = PoseDetection.getClient(options)

Java

PoseDetector poseDetector = PoseDetection.getClient(options);

2. Przygotowywanie obrazu wejściowego

Aby wykryć pozy na obrazie, utwórz obiekt InputImage z obiektu Bitmap, media.Image, ByteBuffer, tablicy bajtów lub pliku na urządzeniu. Następnie przekaż obiekt InputImage do PoseDetector.

W przypadku wykrywania pozycji należy użyć obrazu o wymiarach co najmniej 480 x 360 pikseli. Jeśli wykrywasz pozy w czasie rzeczywistym, przechwytywanie klatek w tej minimalnej rozdzielczości może pomóc w zmniejszeniu opóźnienia.

Możesz utworzyć InputImage obiekt z różnych źródeł. Każde z nich opisujemy poniżej.

Korzystanie z media.Image

Aby utworzyć obiekt InputImage z obiektu media.Image, np. podczas przechwytywania obrazu z aparatu urządzenia, przekaż obiekt media.Image i obrót obrazu do InputImage.fromMediaImage().

Jeśli używasz biblioteki CameraX, klasy OnImageCapturedListenerImageAnalysis.Analyzer obliczają wartość rotacji za Ciebie.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Jeśli nie używasz biblioteki aparatu, która podaje stopień obrotu obrazu, możesz obliczyć go na podstawie stopnia obrotu urządzenia i orientacji czujnika aparatu w urządzeniu:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Następnie przekaż obiekt media.Image i wartość stopnia obrotu do InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Używanie identyfikatora URI pliku

Aby utworzyć obiekt InputImage z identyfikatora URI pliku, przekaż kontekst aplikacji i identyfikator URI pliku do funkcji InputImage.fromFilePath(). Jest to przydatne, gdy używasz intencji ACTION_GET_CONTENT, aby poprosić użytkownika o wybranie obrazu z aplikacji galerii.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Używanie ByteBuffer lub ByteArray

Aby utworzyć obiekt InputImageByteBuffer lub ByteArray, najpierw oblicz stopień rotacji obrazu, jak opisano wcześniej w przypadku danych wejściowych media.Image. Następnie utwórz obiekt InputImage z buforem lub tablicą, a także z wysokością, szerokością, formatem kodowania kolorów i stopniem obrotu obrazu:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Korzystanie z Bitmap

Aby utworzyć obiekt InputImage z obiektu Bitmap, zadeklaruj:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Obraz jest reprezentowany przez obiekt Bitmap wraz ze stopniami obrotu.

3. Przetwarzanie obrazu

Przekaż przygotowany obiekt InputImage do metody process obiektu PoseDetector.

Kotlin

Task<Pose> result = poseDetector.process(image)
       .addOnSuccessListener { results ->
           // Task completed successfully
           // ...
       }
       .addOnFailureListener { e ->
           // Task failed with an exception
           // ...
       }

Java

Task<Pose> result =
        poseDetector.process(image)
                .addOnSuccessListener(
                        new OnSuccessListener<Pose>() {
                            @Override
                            public void onSuccess(Pose pose) {
                                // Task completed successfully
                                // ...
                            }
                        })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

4. Uzyskiwanie informacji o wykrytej pozie

Jeśli na obrazie zostanie wykryta osoba, interfejs Pose Detection API zwróci obiekt Pose z 33 PoseLandmark.

Jeśli osoba nie była w całości widoczna na zdjęciu, model przypisuje brakującym punktom charakterystycznym współrzędne poza ramką i nadaje im niskie wartości InFrameConfidence.

Jeśli w klatce nie wykryto żadnej osoby, obiekt Posenie zawiera żadnych elementów PoseLandmark.

Kotlin

// Get all PoseLandmarks. If no person was detected, the list will be empty
val allPoseLandmarks = pose.getAllPoseLandmarks()

// Or get specific PoseLandmarks individually. These will all be null if no person
// was detected
val leftShoulder = pose.getPoseLandmark(PoseLandmark.LEFT_SHOULDER)
val rightShoulder = pose.getPoseLandmark(PoseLandmark.RIGHT_SHOULDER)
val leftElbow = pose.getPoseLandmark(PoseLandmark.LEFT_ELBOW)
val rightElbow = pose.getPoseLandmark(PoseLandmark.RIGHT_ELBOW)
val leftWrist = pose.getPoseLandmark(PoseLandmark.LEFT_WRIST)
val rightWrist = pose.getPoseLandmark(PoseLandmark.RIGHT_WRIST)
val leftHip = pose.getPoseLandmark(PoseLandmark.LEFT_HIP)
val rightHip = pose.getPoseLandmark(PoseLandmark.RIGHT_HIP)
val leftKnee = pose.getPoseLandmark(PoseLandmark.LEFT_KNEE)
val rightKnee = pose.getPoseLandmark(PoseLandmark.RIGHT_KNEE)
val leftAnkle = pose.getPoseLandmark(PoseLandmark.LEFT_ANKLE)
val rightAnkle = pose.getPoseLandmark(PoseLandmark.RIGHT_ANKLE)
val leftPinky = pose.getPoseLandmark(PoseLandmark.LEFT_PINKY)
val rightPinky = pose.getPoseLandmark(PoseLandmark.RIGHT_PINKY)
val leftIndex = pose.getPoseLandmark(PoseLandmark.LEFT_INDEX)
val rightIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_INDEX)
val leftThumb = pose.getPoseLandmark(PoseLandmark.LEFT_THUMB)
val rightThumb = pose.getPoseLandmark(PoseLandmark.RIGHT_THUMB)
val leftHeel = pose.getPoseLandmark(PoseLandmark.LEFT_HEEL)
val rightHeel = pose.getPoseLandmark(PoseLandmark.RIGHT_HEEL)
val leftFootIndex = pose.getPoseLandmark(PoseLandmark.LEFT_FOOT_INDEX)
val rightFootIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_FOOT_INDEX)
val nose = pose.getPoseLandmark(PoseLandmark.NOSE)
val leftEyeInner = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_INNER)
val leftEye = pose.getPoseLandmark(PoseLandmark.LEFT_EYE)
val leftEyeOuter = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_OUTER)
val rightEyeInner = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_INNER)
val rightEye = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE)
val rightEyeOuter = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_OUTER)
val leftEar = pose.getPoseLandmark(PoseLandmark.LEFT_EAR)
val rightEar = pose.getPoseLandmark(PoseLandmark.RIGHT_EAR)
val leftMouth = pose.getPoseLandmark(PoseLandmark.LEFT_MOUTH)
val rightMouth = pose.getPoseLandmark(PoseLandmark.RIGHT_MOUTH)

Java

// Get all PoseLandmarks. If no person was detected, the list will be empty
List<PoseLandmark> allPoseLandmarks = pose.getAllPoseLandmarks();

// Or get specific PoseLandmarks individually. These will all be null if no person
// was detected
PoseLandmark leftShoulder = pose.getPoseLandmark(PoseLandmark.LEFT_SHOULDER);
PoseLandmark rightShoulder = pose.getPoseLandmark(PoseLandmark.RIGHT_SHOULDER);
PoseLandmark leftElbow = pose.getPoseLandmark(PoseLandmark.LEFT_ELBOW);
PoseLandmark rightElbow = pose.getPoseLandmark(PoseLandmark.RIGHT_ELBOW);
PoseLandmark leftWrist = pose.getPoseLandmark(PoseLandmark.LEFT_WRIST);
PoseLandmark rightWrist = pose.getPoseLandmark(PoseLandmark.RIGHT_WRIST);
PoseLandmark leftHip = pose.getPoseLandmark(PoseLandmark.LEFT_HIP);
PoseLandmark rightHip = pose.getPoseLandmark(PoseLandmark.RIGHT_HIP);
PoseLandmark leftKnee = pose.getPoseLandmark(PoseLandmark.LEFT_KNEE);
PoseLandmark rightKnee = pose.getPoseLandmark(PoseLandmark.RIGHT_KNEE);
PoseLandmark leftAnkle = pose.getPoseLandmark(PoseLandmark.LEFT_ANKLE);
PoseLandmark rightAnkle = pose.getPoseLandmark(PoseLandmark.RIGHT_ANKLE);
PoseLandmark leftPinky = pose.getPoseLandmark(PoseLandmark.LEFT_PINKY);
PoseLandmark rightPinky = pose.getPoseLandmark(PoseLandmark.RIGHT_PINKY);
PoseLandmark leftIndex = pose.getPoseLandmark(PoseLandmark.LEFT_INDEX);
PoseLandmark rightIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_INDEX);
PoseLandmark leftThumb = pose.getPoseLandmark(PoseLandmark.LEFT_THUMB);
PoseLandmark rightThumb = pose.getPoseLandmark(PoseLandmark.RIGHT_THUMB);
PoseLandmark leftHeel = pose.getPoseLandmark(PoseLandmark.LEFT_HEEL);
PoseLandmark rightHeel = pose.getPoseLandmark(PoseLandmark.RIGHT_HEEL);
PoseLandmark leftFootIndex = pose.getPoseLandmark(PoseLandmark.LEFT_FOOT_INDEX);
PoseLandmark rightFootIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_FOOT_INDEX);
PoseLandmark nose = pose.getPoseLandmark(PoseLandmark.NOSE);
PoseLandmark leftEyeInner = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_INNER);
PoseLandmark leftEye = pose.getPoseLandmark(PoseLandmark.LEFT_EYE);
PoseLandmark leftEyeOuter = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_OUTER);
PoseLandmark rightEyeInner = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_INNER);
PoseLandmark rightEye = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE);
PoseLandmark rightEyeOuter = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_OUTER);
PoseLandmark leftEar = pose.getPoseLandmark(PoseLandmark.LEFT_EAR);
PoseLandmark rightEar = pose.getPoseLandmark(PoseLandmark.RIGHT_EAR);
PoseLandmark leftMouth = pose.getPoseLandmark(PoseLandmark.LEFT_MOUTH);
PoseLandmark rightMouth = pose.getPoseLandmark(PoseLandmark.RIGHT_MOUTH);

Wskazówki dotyczące poprawy skuteczności

Jakość wyników zależy od jakości obrazu wejściowego:

  • Aby ML Kit mógł dokładnie wykryć pozę, osoba na zdjęciu powinna być reprezentowana przez wystarczającą ilość danych w pikselach. Aby uzyskać najlepsze wyniki, obiekt powinien mieć co najmniej 256 × 256 pikseli.
  • Jeśli wykrywasz pozę w aplikacji działającej w czasie rzeczywistym, możesz też wziąć pod uwagę ogólne wymiary obrazów wejściowych. Mniejsze obrazy można przetwarzać szybciej, więc aby zmniejszyć opóźnienie, rób zdjęcia w niższych rozdzielczościach. Pamiętaj jednak o wymaganiach dotyczących rozdzielczości i dopilnuj, aby obiekt zajmował jak największą część obrazu.
  • Na dokładność może też wpływać słaba ostrość obrazu. Jeśli nie uzyskasz zadowalających wyników, poproś użytkownika o ponowne zrobienie zdjęcia.

Jeśli chcesz używać wykrywania pozycji w aplikacji działającej w czasie rzeczywistym, postępuj zgodnie z tymi wskazówkami, aby uzyskać najlepszą liczbę klatek na sekundę:

  • Użyj podstawowego pakietu SDK do wykrywania pozycji i STREAM_MODE.
  • Rozważ robienie zdjęć w niższej rozdzielczości. Pamiętaj jednak o wymaganiach dotyczących wymiarów obrazu w tym interfejsie API.
  • Jeśli używasz interfejsu API Camera lub camera2, ogranicz wywołania detektora. Jeśli podczas działania detektora pojawi się nowa klatka wideo, odrzuć ją. Przykład znajdziesz w klasie VisionProcessorBase w przykładowej aplikacji z krótkiego wprowadzenia.
  • Jeśli używasz interfejsu CameraX API, upewnij się, że strategia ograniczenia przepustowości ma wartość domyślną ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. Gwarantuje to, że do analizy będzie przesyłany tylko 1 obraz naraz. Jeśli w czasie, gdy analizator jest zajęty, zostanie wygenerowanych więcej obrazów, zostaną one automatycznie odrzucone i nie zostaną umieszczone w kolejce do dostarczenia. Gdy analizowany obraz zostanie zamknięty przez wywołanie ImageProxy.close(), zostanie dostarczony kolejny najnowszy obraz.
  • Jeśli używasz danych wyjściowych detektora do nakładania grafiki na obraz wejściowy, najpierw uzyskaj wynik z ML Kit, a następnie w jednym kroku wyrenderuj obraz i nałóż na niego grafikę. Jest on renderowany na powierzchni wyświetlacza tylko raz dla każdej ramki wejściowej. Przykład znajdziesz w klasach CameraSourcePreview GraphicOverlay w przykładowej aplikacji z krótkiego wprowadzenia.
  • Jeśli używasz interfejsu Camera2 API, rób zdjęcia w formacie ImageFormat.YUV_420_888. Jeśli używasz starszego interfejsu Camera API, rób zdjęcia w formacie ImageFormat.NV21.

Dalsze kroki