ML Kit มี SDK ที่เพิ่มประสิทธิภาพ 2 รายการสำหรับการตรวจจับท่าทาง
ชื่อ SDK | pose-detection | pose-detection-accurate |
---|---|---|
การใช้งาน | โค้ดและเนื้อหาจะลิงก์กับแอปของคุณแบบคงที่ ณ เวลาบิลด์ | โค้ดและเนื้อหาจะลิงก์กับแอปของคุณแบบคงที่ ณ เวลาบิลด์ |
ผลกระทบของขนาดแอป (รวมถึงโค้ดและเนื้อหา) | ~10.1MB | ~13.3MB |
ประสิทธิภาพ | Pixel 3XL: ~30FPS | Pixel 3XL: ~23FPS พร้อม CPU, ~30FPS พร้อม GPU |
ลองเลย
- ลองใช้แอปตัวอย่างเพื่อ ดูตัวอย่างการใช้ API นี้
ก่อนเริ่มต้น
- ในไฟล์
build.gradle
ระดับโปรเจ็กต์ อย่าลืมรวมที่เก็บ Maven ของ Google ไว้ทั้งในส่วนbuildscript
และallprojects
เพิ่มทรัพยากร Dependency สำหรับไลบรารี ML Kit Android ลงในไฟล์ Gradle ระดับแอปของโมดูล ซึ่งปกติคือ
app/build.gradle
dependencies { // If you want to use the base sdk implementation 'com.google.mlkit:pose-detection:18.0.0-beta5' // If you want to use the accurate sdk implementation 'com.google.mlkit:pose-detection-accurate:18.0.0-beta5' }
1. สร้างอินสแตนซ์ของ PoseDetector
PoseDetector
ตัวเลือก
หากต้องการตรวจหาท่าทางในรูปภาพ ให้สร้างอินสแตนซ์ PoseDetector
ก่อน และ
ระบุการตั้งค่าตัวตรวจจับ (ไม่บังคับ)
โหมดการตรวจจับ
PoseDetector
ทำงานในโหมดการตรวจจับ 2 โหมด ตรวจสอบให้แน่ใจว่าคุณเลือกรายการที่ตรงกับ
Use Case ของคุณ
STREAM_MODE
(ค่าเริ่มต้น)- ตัวตรวจจับท่าทางจะตรวจจับได้บ่อยที่สุดก่อน บุคคลที่มีชื่อเสียงในภาพ แล้วเรียกใช้การตรวจจับท่าทาง ในเฟรมต่อๆ มา จะไม่ดำเนินขั้นตอนการตรวจหาบุคคล เว้นแต่บุคคลนั้นจะ ถูกปิดบังหรือตรวจไม่พบด้วยความมั่นใจสูงอีกต่อไป ตัวตรวจจับท่าทางจะ พยายามติดตามคนที่โดดเด่นที่สุด และแสดงท่าทางของแต่ละคน การอนุมาน ซึ่งจะช่วยลดเวลาในการตอบสนองและทำให้การตรวจจับเป็นไปอย่างราบรื่น ใช้โหมดนี้เมื่อคุณ ต้องการตรวจจับท่าทางในสตรีมวิดีโอ
SINGLE_IMAGE_MODE
- ตัวตรวจจับท่าทางจะตรวจจับบุคคลแล้วทำท่าทาง การตรวจจับ ขั้นตอนการตรวจหาบุคคลจะทำงานสำหรับทุกรูปภาพ ดังนั้นเวลาในการตอบสนองจะ สูงกว่า และไม่มีการติดตามบุคคล ใช้โหมดนี้เมื่อใช้ท่าทาง ในภาพนิ่งหรือในที่ที่ไม่ต้องการการติดตาม
การกำหนดค่าฮาร์ดแวร์
PoseDetector
รองรับการกำหนดค่าฮาร์ดแวร์หลายรายการเพื่อเพิ่มประสิทธิภาพ
ประสิทธิภาพ:
CPU
: เรียกใช้ตัวตรวจจับโดยใช้ CPU เท่านั้นCPU_GPU
: เรียกใช้ตัวตรวจจับโดยใช้ทั้ง CPU และ GPU
เมื่อสร้างตัวเลือกตัวตรวจจับ คุณสามารถใช้ API
setPreferredHardwareConfigs
เพื่อควบคุมการเลือกฮาร์ดแวร์ โดยค่าเริ่มต้น
กำหนดค่าฮาร์ดแวร์ทั้งหมดเป็นที่ต้องการ
ML Kit จะตรวจสอบความพร้อมใช้งาน ความเสถียร ความถูกต้อง และเวลาในการตอบสนองของการกำหนดค่าแต่ละรายการ
มาพิจารณาและเลือกการกำหนดค่าที่ดีที่สุดจากการกำหนดค่าที่ต้องการ หากไม่มี
มีการกำหนดค่าที่ต้องการ ระบบจะใช้การกำหนดค่า CPU
โดยอัตโนมัติ
เป็นรูปแบบสำรอง ML Kit จะทำการตรวจสอบเหล่านี้และการเตรียมความพร้อมที่เกี่ยวข้องใน
แบบไม่กีดขวาง ก่อนที่จะเปิดใช้การเร่งความเร็ว จึงมีแนวโน้ม
ครั้งแรกที่ผู้ใช้เรียกใช้ตัวตรวจจับ ระบบจะใช้ CPU
หลังจากที่
การเตรียมดำเนินการเสร็จสิ้นแล้ว การกำหนดค่าที่ดีที่สุดในการเรียกใช้ต่อไปนี้
ตัวอย่างการใช้ setPreferredHardwareConfigs
- อย่าเรียกใช้ API นี้เพื่อให้ ML Kit เลือกการกำหนดค่าที่ดีที่สุด
- หากไม่ต้องการเปิดใช้การเร่งความเร็ว โปรดส่งผ่าน
CPU
เท่านั้น - หากต้องการใช้ GPU เพื่อลดโหลด CPU แม้ว่า GPU อาจทำงานช้าลงก็ตาม โปรดยอมรับ
ในราคาเพียง
CPU_GPU
ระบุตัวเลือกสำหรับตัวตรวจจับตำแหน่ง
// Base pose detector with streaming frames, when depending on the pose-detection sdk val options = PoseDetectorOptions.Builder() .setDetectorMode(PoseDetectorOptions.STREAM_MODE) .build() // Accurate pose detector on static images, when depending on the pose-detection-accurate sdk val options = AccuratePoseDetectorOptions.Builder() .setDetectorMode(AccuratePoseDetectorOptions.SINGLE_IMAGE_MODE) .build()
// Base pose detector with streaming frames, when depending on the pose-detection sdk PoseDetectorOptions options = new PoseDetectorOptions.Builder() .setDetectorMode(PoseDetectorOptions.STREAM_MODE) .build(); // Accurate pose detector on static images, when depending on the pose-detection-accurate sdk AccuratePoseDetectorOptions options = new AccuratePoseDetectorOptions.Builder() .setDetectorMode(AccuratePoseDetectorOptions.SINGLE_IMAGE_MODE) .build();
สร้างอินสแตนซ์ของ PoseDetector
ในขั้นตอนสุดท้าย ส่งผ่านตัวเลือกที่คุณระบุ:
val poseDetector = PoseDetection.getClient(options)
PoseDetector poseDetector = PoseDetection.getClient(options);
2. เตรียมรูปภาพอินพุต
หากต้องการตรวจหาท่าทางในรูปภาพ ให้สร้างวัตถุ InputImage
จากอาร์เรย์ Bitmap
, media.Image
, ByteBuffer
, ไบต์ หรือไฟล์ใน
อุปกรณ์ จากนั้นส่งออบเจ็กต์ InputImage
ไปยัง
PoseDetector
สำหรับการตรวจจับท่าทาง คุณควรใช้รูปภาพที่มีขนาดอย่างน้อย 480x360 พิกเซล หากคุณกำลังตรวจจับท่าทางแบบเรียลไทม์ การจับภาพเฟรม ความละเอียดขั้นต่ำนี้จะช่วยลดเวลาในการตอบสนองได้
คุณสามารถสร้างInputImage
จากแหล่งที่มาต่างๆ ซึ่งอธิบายไว้ด้านล่าง
กำลังใช้media.Image
วิธีสร้าง InputImage
จากออบเจ็กต์ media.Image
เช่น เมื่อคุณจับภาพจาก
กล้องของอุปกรณ์ ส่งวัตถุ media.Image
และ
การหมุนเวียนเป็น InputImage.fromMediaImage()
หากคุณใช้แท็ก
ไลบรารี CameraX, OnImageCapturedListener
และ
ImageAnalysis.Analyzer
คลาสจะคำนวณค่าการหมุนเวียน
สำหรับคุณ
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
ถ้าคุณไม่ได้ใช้ไลบรารีกล้องถ่ายรูปที่ให้องศาการหมุนของภาพ คุณ สามารถคำนวณได้จากระดับการหมุนของอุปกรณ์และการวางแนวของกล้อง เซ็นเซอร์ในอุปกรณ์:
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
จากนั้นส่งออบเจ็กต์ media.Image
และ
ค่าองศาการหมุนเป็น InputImage.fromMediaImage()
:
val image = InputImage.fromMediaImage(mediaImage, rotation)
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
การใช้ URI ของไฟล์
วิธีสร้าง InputImage
จาก URI ของไฟล์ แล้วส่งบริบทของแอปและ URI ของไฟล์ไปยัง
InputImage.fromFilePath()
วิธีนี้มีประโยชน์เมื่อคุณ
ใช้ Intent ACTION_GET_CONTENT
เพื่อแจ้งให้ผู้ใช้เลือก
รูปภาพจากแอปแกลเลอรี
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
InputImage image;
try {
image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
e.printStackTrace();
}
กำลังใช้ByteBuffer
หรือByteArray
วิธีสร้าง InputImage
จาก ByteBuffer
หรือ ByteArray
ให้คำนวณรูปภาพก่อน
องศาการหมุนตามที่อธิบายไว้ก่อนหน้านี้สำหรับอินพุต media.Image
จากนั้นสร้างออบเจ็กต์ InputImage
พร้อมบัฟเฟอร์หรืออาร์เรย์ ร่วมกับรูปภาพ
ความสูง ความกว้าง รูปแบบการเข้ารหัสสี และระดับการหมุน:
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
กำลังใช้Bitmap
วิธีสร้าง InputImage
จากออบเจ็กต์ Bitmap
ให้ทำการประกาศต่อไปนี้
val image = InputImage.fromBitmap(bitmap, 0)
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
รูปภาพจะแสดงเป็นวัตถุ Bitmap
ร่วมกับองศาการหมุน
3. ประมวลผลรูปภาพ
ส่งต่อออบเจ็กต์ InputImage
ที่เตรียมไว้ไปยังเมธอด process
ของ PoseDetector
Task<Pose> result = poseDetector.process(image) .addOnSuccessListener { results -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Task<Pose> result = poseDetector.process(image) .addOnSuccessListener( new OnSuccessListener<Pose>() { @Override public void onSuccess(Pose pose) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. รับข้อมูลเกี่ยวกับท่าทางที่ตรวจพบ
หากมีการตรวจพบบุคคลในรูปภาพ API การตรวจจับท่าทางจะแสดงผลเป็น Pose
ที่มี 33 PoseLandmark
หากบุคคลไม่ได้อยู่ในรูปภาพโดยสมบูรณ์ โมเดลจะกำหนด พิกัดของจุดสังเกตที่ขาดหายไปนอกเฟรม ทำให้พิกัดเหล่านั้นต่ำ ค่า InFrameConfidence
หากระบบตรวจพบบุคคลในเฟรมไม่ได้Pose
ออบเจ็กต์ไม่มี PoseLandmark
// Get all PoseLandmarks. If no person was detected, the list will be empty val allPoseLandmarks = pose.getAllPoseLandmarks() // Or get specific PoseLandmarks individually. These will all be null if no person // was detected val leftShoulder = pose.getPoseLandmark(PoseLandmark.LEFT_SHOULDER) val rightShoulder = pose.getPoseLandmark(PoseLandmark.RIGHT_SHOULDER) val leftElbow = pose.getPoseLandmark(PoseLandmark.LEFT_ELBOW) val rightElbow = pose.getPoseLandmark(PoseLandmark.RIGHT_ELBOW) val leftWrist = pose.getPoseLandmark(PoseLandmark.LEFT_WRIST) val rightWrist = pose.getPoseLandmark(PoseLandmark.RIGHT_WRIST) val leftHip = pose.getPoseLandmark(PoseLandmark.LEFT_HIP) val rightHip = pose.getPoseLandmark(PoseLandmark.RIGHT_HIP) val leftKnee = pose.getPoseLandmark(PoseLandmark.LEFT_KNEE) val rightKnee = pose.getPoseLandmark(PoseLandmark.RIGHT_KNEE) val leftAnkle = pose.getPoseLandmark(PoseLandmark.LEFT_ANKLE) val rightAnkle = pose.getPoseLandmark(PoseLandmark.RIGHT_ANKLE) val leftPinky = pose.getPoseLandmark(PoseLandmark.LEFT_PINKY) val rightPinky = pose.getPoseLandmark(PoseLandmark.RIGHT_PINKY) val leftIndex = pose.getPoseLandmark(PoseLandmark.LEFT_INDEX) val rightIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_INDEX) val leftThumb = pose.getPoseLandmark(PoseLandmark.LEFT_THUMB) val rightThumb = pose.getPoseLandmark(PoseLandmark.RIGHT_THUMB) val leftHeel = pose.getPoseLandmark(PoseLandmark.LEFT_HEEL) val rightHeel = pose.getPoseLandmark(PoseLandmark.RIGHT_HEEL) val leftFootIndex = pose.getPoseLandmark(PoseLandmark.LEFT_FOOT_INDEX) val rightFootIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_FOOT_INDEX) val nose = pose.getPoseLandmark(PoseLandmark.NOSE) val leftEyeInner = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_INNER) val leftEye = pose.getPoseLandmark(PoseLandmark.LEFT_EYE) val leftEyeOuter = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_OUTER) val rightEyeInner = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_INNER) val rightEye = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE) val rightEyeOuter = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_OUTER) val leftEar = pose.getPoseLandmark(PoseLandmark.LEFT_EAR) val rightEar = pose.getPoseLandmark(PoseLandmark.RIGHT_EAR) val leftMouth = pose.getPoseLandmark(PoseLandmark.LEFT_MOUTH) val rightMouth = pose.getPoseLandmark(PoseLandmark.RIGHT_MOUTH)
// Get all PoseLandmarks. If no person was detected, the list will be empty List<PoseLandmark> allPoseLandmarks = pose.getAllPoseLandmarks(); // Or get specific PoseLandmarks individually. These will all be null if no person // was detected PoseLandmark leftShoulder = pose.getPoseLandmark(PoseLandmark.LEFT_SHOULDER); PoseLandmark rightShoulder = pose.getPoseLandmark(PoseLandmark.RIGHT_SHOULDER); PoseLandmark leftElbow = pose.getPoseLandmark(PoseLandmark.LEFT_ELBOW); PoseLandmark rightElbow = pose.getPoseLandmark(PoseLandmark.RIGHT_ELBOW); PoseLandmark leftWrist = pose.getPoseLandmark(PoseLandmark.LEFT_WRIST); PoseLandmark rightWrist = pose.getPoseLandmark(PoseLandmark.RIGHT_WRIST); PoseLandmark leftHip = pose.getPoseLandmark(PoseLandmark.LEFT_HIP); PoseLandmark rightHip = pose.getPoseLandmark(PoseLandmark.RIGHT_HIP); PoseLandmark leftKnee = pose.getPoseLandmark(PoseLandmark.LEFT_KNEE); PoseLandmark rightKnee = pose.getPoseLandmark(PoseLandmark.RIGHT_KNEE); PoseLandmark leftAnkle = pose.getPoseLandmark(PoseLandmark.LEFT_ANKLE); PoseLandmark rightAnkle = pose.getPoseLandmark(PoseLandmark.RIGHT_ANKLE); PoseLandmark leftPinky = pose.getPoseLandmark(PoseLandmark.LEFT_PINKY); PoseLandmark rightPinky = pose.getPoseLandmark(PoseLandmark.RIGHT_PINKY); PoseLandmark leftIndex = pose.getPoseLandmark(PoseLandmark.LEFT_INDEX); PoseLandmark rightIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_INDEX); PoseLandmark leftThumb = pose.getPoseLandmark(PoseLandmark.LEFT_THUMB); PoseLandmark rightThumb = pose.getPoseLandmark(PoseLandmark.RIGHT_THUMB); PoseLandmark leftHeel = pose.getPoseLandmark(PoseLandmark.LEFT_HEEL); PoseLandmark rightHeel = pose.getPoseLandmark(PoseLandmark.RIGHT_HEEL); PoseLandmark leftFootIndex = pose.getPoseLandmark(PoseLandmark.LEFT_FOOT_INDEX); PoseLandmark rightFootIndex = pose.getPoseLandmark(PoseLandmark.RIGHT_FOOT_INDEX); PoseLandmark nose = pose.getPoseLandmark(PoseLandmark.NOSE); PoseLandmark leftEyeInner = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_INNER); PoseLandmark leftEye = pose.getPoseLandmark(PoseLandmark.LEFT_EYE); PoseLandmark leftEyeOuter = pose.getPoseLandmark(PoseLandmark.LEFT_EYE_OUTER); PoseLandmark rightEyeInner = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_INNER); PoseLandmark rightEye = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE); PoseLandmark rightEyeOuter = pose.getPoseLandmark(PoseLandmark.RIGHT_EYE_OUTER); PoseLandmark leftEar = pose.getPoseLandmark(PoseLandmark.LEFT_EAR); PoseLandmark rightEar = pose.getPoseLandmark(PoseLandmark.RIGHT_EAR); PoseLandmark leftMouth = pose.getPoseLandmark(PoseLandmark.LEFT_MOUTH); PoseLandmark rightMouth = pose.getPoseLandmark(PoseLandmark.RIGHT_MOUTH);
เคล็ดลับในการปรับปรุงประสิทธิภาพ
คุณภาพของผลลัพธ์จะขึ้นอยู่กับคุณภาพของรูปภาพที่ป้อน ดังนี้
- เพื่อให้ ML Kit ตรวจจับท่าทางได้อย่างแม่นยำ บุคคลในภาพควร แสดงด้วยข้อมูลพิกเซลที่เพียงพอ เพื่อประสิทธิภาพที่ดีที่สุด หัวเรื่องควร ต้องมีขนาดอย่างน้อย 256x256 พิกเซล
- ถ้าตรวจพบการโพสท่าในแอปพลิเคชันแบบเรียลไทม์ คุณอาจต้อง ขนาดโดยรวมของรูปภาพอินพุต ประมวลผลรูปภาพขนาดเล็กได้ เร็วขึ้น ดังนั้นเพื่อลดเวลาในการตอบสนอง ให้จับภาพด้วยความละเอียดที่ต่ำลง ตามข้อกำหนดในการแก้ปัญหาข้างต้น และตรวจสอบว่าหัวเรื่องนั้นเป็นไปตาม ของภาพดังกล่าวให้มากที่สุด
- การโฟกัสของรูปภาพไม่ดีอาจส่งผลต่อความแม่นยำด้วย หากคุณไม่ได้รับผลลัพธ์ ที่ยอมรับได้ ขอให้ผู้ใช้จับภาพอีกครั้ง
หากคุณต้องการใช้การตรวจจับท่าทางในแอปพลิเคชันแบบเรียลไทม์ ให้ทำตามหลักเกณฑ์ต่อไปนี้เพื่อให้ได้อัตราเฟรมที่ดีที่สุด
- ใช้ SDK การตรวจหาตำแหน่งฐานและ
STREAM_MODE
- ลองจับภาพที่ความละเอียดต่ำลง อย่างไรก็ตาม โปรดคำนึงถึงข้อกำหนดเกี่ยวกับขนาดรูปภาพของ API นี้ด้วย
- หากคุณใช้แท็ก
Camera
หรือcamera2
API, รวมถึงควบคุมการเรียกไปที่ตัวตรวจจับ หากวิดีโอใหม่ เฟรมพร้อมใช้งานขณะที่ตัวตรวจจับกำลังทำงาน ให้วางเฟรม โปรดดูVisionProcessorBase
ในแอปตัวอย่างการเริ่มต้นอย่างรวดเร็วสำหรับตัวอย่าง - หากคุณใช้
CameraX
API ตรวจสอบว่ากลยุทธ์ Backpressure เป็นค่าเริ่มต้นImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
วิธีนี้ช่วยให้มั่นใจว่าระบบจะส่งรูปภาพมาวิเคราะห์เพียงครั้งละ 1 รูป ถ้ารูปภาพเพิ่มเติมคือ ผลิตขณะที่เครื่องมือวิเคราะห์ไม่ว่าง ข้อมูลจะหายไปโดยอัตโนมัติและไม่ได้เข้าคิว เมื่อปิดการวิเคราะห์รูปภาพด้วยการเรียกใช้ ImageProxy.close() ระบบจะส่งรูปภาพล่าสุดถัดไป - หากคุณใช้เอาต์พุตของเครื่องมือตรวจจับเพื่อวางซ้อนกราฟิก
รูปภาพอินพุต รับผลลัพธ์จาก ML Kit ก่อน จากนั้นจึงแสดงผลรูปภาพ
ซ้อนทับในขั้นตอนเดียว การดำเนินการนี้จะแสดงผลบนพื้นผิวจอแสดงผล
เพียงครั้งเดียวสำหรับเฟรมอินพุตแต่ละเฟรม โปรดดู
CameraSourcePreview
และ คลาสGraphicOverlay
ในแอปตัวอย่างการเริ่มต้นอย่างรวดเร็วสำหรับตัวอย่าง - หากคุณใช้ Camera2 API ให้จับภาพใน
ImageFormat.YUV_420_888
หากคุณใช้ Camera API รุ่นเก่า ให้จับภาพในImageFormat.NV21
ขั้นตอนถัดไป
- หากต้องการเรียนรู้วิธีใช้จุดสังเกตของการโพสท่าเพื่อแยกท่าต่างๆ โปรดดูเคล็ดลับในการจัดประเภทท่าโพส