在 iOS 上使用机器学习套件检测姿势

机器学习套件提供了两个用于姿态检测的优化 SDK。

SDK 名称姿势检测姿态检测准确
实现基本检测器的素材资源会在构建时静态关联到您的应用。准确的检测器资源会在构建时静态关联到您的应用。
应用大小29.6 MB33.2 MB
性能iPhone X:约 45 FPSiPhone X:约 29 FPS
  • 请试用示例应用,以查看此 API 的用法示例。

准备工作

  1. 在 Podfile 中添加以下机器学习套件 pod:

    # If you want to use the base implementation:
    pod 'GoogleMLKit/PoseDetection', '3.2.0'
    
    # If you want to use the accurate implementation:
    pod 'GoogleMLKit/PoseDetectionAccurate', '3.2.0'
    
  2. 安装或更新项目的 pod 后,请使用 Xcode 项目的 xcworkspace 打开该项目。Xcode 13.2.1 版或更高版本支持机器学习套件。

1. 创建 PoseDetector 实例

如需检测图片中的姿势,请先创建一个 PoseDetector 实例,并指定指定检测器设置。

PoseDetector选项

检测模式

PoseDetector 在两种检测模式下运行。请确保选择与您的用例匹配的模板。

stream(默认)
姿势检测器会首先检测图片中最显眼的人物,然后运行姿势检测。在后续帧中,除非检测对象变得模糊或不再高可信度检测到该识别步骤,否则将不会执行检测操作。姿势检测器将尝试跟踪最重要的人,并在每个推断中返回他们的姿势。这样可以缩短延迟时间并使检测更加流畅。如果要在视频流中检测姿势,请使用此模式。
singleImage
姿势检测器将检测用户,然后运行姿势检测。系统会针对每张图片运行人物检测步骤,因此延迟时间较长,并且没有人跟踪。在对静态图片使用姿势检测或不需要跟踪时使用此模式。

指定姿势检测器选项:

Swift

// Base pose detector with streaming, when depending on the PoseDetection SDK
let options = PoseDetectorOptions()
options.detectorMode = .stream

// Accurate pose detector on static images, when depending on the
// PoseDetectionAccurate SDK
let options = AccuratePoseDetectorOptions()
options.detectorMode = .singleImage

Objective-C

// Base pose detector with streaming, when depending on the PoseDetection SDK
MLKPoseDetectorOptions *options = [[MLKPoseDetectorOptions alloc] init];
options.detectorMode = MLKPoseDetectorModeStream;

// Accurate pose detector on static images, when depending on the
// PoseDetectionAccurate SDK
MLKAccuratePoseDetectorOptions *options =
    [[MLKAccuratePoseDetectorOptions alloc] init];
options.detectorMode = MLKPoseDetectorModeSingleImage;

最后,获取 PoseDetector 的一个实例。传递您指定的选项:

Swift

let poseDetector = PoseDetector.poseDetector(options: options)

Objective-C

MLKPoseDetector *poseDetector =
    [MLKPoseDetector poseDetectorWithOptions:options];

2. 准备输入图片

如需检测姿势,请对每张图片或每个视频帧执行以下操作。如果您启用了流模式,则必须从 CMSampleBuffer 创建 VisionImage 对象。

使用 UIImageCMSampleBuffer 创建 VisionImage 对象。

如果您使用的是 UIImage,请按以下步骤操作:

  • 使用 UIImage 创建一个 VisionImage 对象。请务必指定正确的 .orientation

    Swift

    let image = VisionImage(image: UIImage)
    visionImage.orientation = image.imageOrientation

    Objective-C

    MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image];
    visionImage.orientation = image.imageOrientation;

如果您使用的是 CMSampleBuffer,请按以下步骤操作:

  • 指定 CMSampleBuffer 中包含的图片数据的方向。

    要获取图片方向,请执行以下操作:

    Swift

    func imageOrientation(
      deviceOrientation: UIDeviceOrientation,
      cameraPosition: AVCaptureDevice.Position
    ) -> UIImage.Orientation {
      switch deviceOrientation {
      case .portrait:
        return cameraPosition == .front ? .leftMirrored : .right
      case .landscapeLeft:
        return cameraPosition == .front ? .downMirrored : .up
      case .portraitUpsideDown:
        return cameraPosition == .front ? .rightMirrored : .left
      case .landscapeRight:
        return cameraPosition == .front ? .upMirrored : .down
      case .faceDown, .faceUp, .unknown:
        return .up
      }
    }
          

    Objective-C

    - (UIImageOrientation)
      imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                             cameraPosition:(AVCaptureDevicePosition)cameraPosition {
      switch (deviceOrientation) {
        case UIDeviceOrientationPortrait:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored
                                                                : UIImageOrientationRight;
    
        case UIDeviceOrientationLandscapeLeft:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored
                                                                : UIImageOrientationUp;
        case UIDeviceOrientationPortraitUpsideDown:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored
                                                                : UIImageOrientationLeft;
        case UIDeviceOrientationLandscapeRight:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored
                                                                : UIImageOrientationDown;
        case UIDeviceOrientationUnknown:
        case UIDeviceOrientationFaceUp:
        case UIDeviceOrientationFaceDown:
          return UIImageOrientationUp;
      }
    }
          
  • 使用 CMSampleBuffer 对象和屏幕方向创建 VisionImage 对象:

    Swift

    let image = VisionImage(buffer: sampleBuffer)
    image.orientation = imageOrientation(
      deviceOrientation: UIDevice.current.orientation,
      cameraPosition: cameraPosition)

    Objective-C

     MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer];
     image.orientation =
       [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                    cameraPosition:cameraPosition];

3. 处理图片

VisionImage 传递给姿态检测器的某个图像处理方法。您可以使用异步 process(image:) 方法或同步 results() 方法。

如需同步检测对象,请执行以下操作:

Swift

var results: [Pose]
do {
  results = try poseDetector.results(in: image)
} catch let error {
  print("Failed to detect pose with error: \(error.localizedDescription).")
  return
}
guard let detectedPoses = results, !detectedPoses.isEmpty else {
  print("Pose detector returned no results.")
  return
}

// Success. Get pose landmarks here.

Objective-C

NSError *error;
NSArray *poses = [poseDetector resultsInImage:image error:&error];
if (error != nil) {
  // Error.
  return;
}
if (poses.count == 0) {
  // No pose detected.
  return;
}

// Success. Get pose landmarks here.

如需异步检测对象,请执行以下操作:

Swift

poseDetector.process(image) { detectedPoses, error in
  guard error == nil else {
    // Error.
    return
  }
  guard !detectedPoses.isEmpty else {
    // No pose detected.
    return
  }

  // Success. Get pose landmarks here.
}

Objective-C

[poseDetector processImage:image
                completion:^(NSArray * _Nullable poses,
                             NSError * _Nullable error) {
                    if (error != nil) {
                      // Error.
                      return;
                    }
                    if (poses.count == 0) {
                      // No pose detected.
                      return;
                    }

                    // Success. Get pose landmarks here.
                  }];

4. 获取有关检测到的姿势的信息

如果在图片中检测到人,姿势检测 API 会将 Pose 对象数组传递给完成处理程序或返回数组,具体取决于您调用的是异步方法还是同步方法。

如果人物不完全位于图片内,模型会分配缺失的帧坐标外的坐标,并给予其较低的 InFrameConfidence 值。

如果未检测到人员,则数组为空。

Swift

for pose in detectedPoses {
  let leftAnkleLandmark = pose.landmark(ofType: .leftAnkle)
  if leftAnkleLandmark.inFrameLikelihood > 0.5 {
    let position = leftAnkleLandmark.position
  }
}

Objective-C

for (MLKPose *pose in detectedPoses) {
  MLKPoseLandmark *leftAnkleLandmark =
      [pose landmarkOfType:MLKPoseLandmarkTypeLeftAnkle];
  if (leftAnkleLandmark.inFrameLikelihood > 0.5) {
    MLKVision3DPoint *position = leftAnkleLandmark.position;
  }
}

效果提升技巧

搜索结果的质量取决于输入图片的质量:

  • 为了使机器学习套件准确检测姿势,图片中的人物应由足够的像素数据表示;为获得最佳效果,拍摄对象应至少为 256x256 像素。
  • 如果您在实时应用中检测到姿态,则可能还需要考虑输入图像的整体尺寸。较小图片的处理速度相对较快,因此,为了缩短延迟时间,请以较低的分辨率捕获图片,但请牢记上述分辨率要求,并确保拍摄对象在图片中占尽可能大的部分。
  • 图片聚焦不良也会影响准确性。如果您没有获得可接受的结果,请请求用户重新拍摄图片。

如果要在实时应用中使用姿态检测,请遵循以下准则以实现最佳帧速率:

  • 使用基本 PoseDetection SDK 和 stream 检测模式。
  • 建议以较低分辨率捕获图片。但是,您也要牢记此 API 的图片尺寸要求。
  • 如需处理视频帧,请使用检测器的 results(in:) 同步 API。从 AVCaptureVideoDataOutputSampleBufferDelegatecaptureOutput(_, didOutput:from:) 函数中调用此方法,以同步获取给定视频帧的结果。将 AVCaptureVideoDataOutputalwaysDismisssLateVideoFrames 设置为 true,以限制对检测器的调用。如果在检测器运行时有新的视频帧可用,将被丢弃。
  • 如果您使用检测器的输出在输入图片上叠加图形,请先从机器学习套件获取结果,然后在一个步骤中完成图片的呈现和叠加。采用这一方法,每个已处理的输入帧只需在显示表面呈现一次。如需查看示例,请参阅展示示例应用中的 previewOverlayViewMLKDetectionOverlayView 类。

后续步骤