ML Kit มี SDK ที่เพิ่มประสิทธิภาพ 2 รายการสำหรับการตรวจจับท่าทาง
ชื่อ SDK | PoseDetection | PoseDetectionAccurate |
---|---|---|
การใช้งาน | ชิ้นงานสำหรับตัวตรวจจับพื้นฐานจะลิงก์กับแอปของคุณแบบคงที่ ณ เวลาบิลด์ | ชิ้นงานสําหรับตัวตรวจจับที่แม่นยําจะลิงก์แบบคงที่กับแอป ณ เวลาบิลด์ |
ขนาดแอป | ไม่เกิน 29.6 MB | ไม่เกิน 33.2 MB |
ประสิทธิภาพ | iPhone X: ~45FPS | iPhone X: ~29FPS |
ลองเลย
- ลองใช้แอปตัวอย่างเพื่อ ดูตัวอย่างการใช้ API นี้
ก่อนเริ่มต้น
ใส่พ็อด ML Kit ต่อไปนี้ใน Podfile
# If you want to use the base implementation: pod 'GoogleMLKit/PoseDetection', '3.2.0' # If you want to use the accurate implementation: pod 'GoogleMLKit/PoseDetectionAccurate', '3.2.0'
หลังจากติดตั้งหรืออัปเดตพ็อดของโปรเจ็กต์แล้ว ให้เปิดโปรเจ็กต์ Xcode โดยใช้
xcworkspace
ทั้งนี้ ML Kit ได้รับการรองรับใน Xcode เวอร์ชัน 13.2.1 ขึ้นไป
1. สร้างอินสแตนซ์ของ PoseDetector
หากต้องการตรวจหาท่าทางในรูปภาพ ให้สร้างอินสแตนซ์ PoseDetector
ก่อน และ
ระบุการตั้งค่าตัวตรวจจับ (ไม่บังคับ)
PoseDetector
ตัวเลือก
โหมดการตรวจจับ
PoseDetector
ทำงานในโหมดการตรวจจับ 2 โหมด ตรวจสอบให้แน่ใจว่าคุณเลือกรายการที่ตรงกับ
Use Case ของคุณ
stream
(ค่าเริ่มต้น)- ตัวตรวจจับท่าทางจะตรวจจับได้บ่อยที่สุดก่อน บุคคลที่มีชื่อเสียงในภาพ แล้วเรียกใช้การตรวจจับท่าทาง ในเฟรมต่อๆ มา จะไม่ดำเนินขั้นตอนการตรวจหาบุคคล เว้นแต่บุคคลนั้นจะ ถูกปิดบังหรือตรวจไม่พบด้วยความมั่นใจสูงอีกต่อไป ตัวตรวจจับท่าทางจะ พยายามติดตามคนที่โดดเด่นที่สุด และแสดงท่าทางของแต่ละคน การอนุมาน ซึ่งจะช่วยลดเวลาในการตอบสนองและทำให้การตรวจจับเป็นไปอย่างราบรื่น ใช้โหมดนี้เมื่อคุณ ต้องการตรวจจับท่าทางในสตรีมวิดีโอ
singleImage
- ตัวตรวจจับท่าทางจะตรวจจับบุคคลแล้วทำท่าทาง การตรวจจับ ขั้นตอนการตรวจหาบุคคลจะทำงานสำหรับทุกรูปภาพ ดังนั้นเวลาในการตอบสนองจะ สูงกว่า และไม่มีการติดตามบุคคล ใช้โหมดนี้เมื่อใช้ท่าทาง ในภาพนิ่งหรือในที่ที่ไม่ต้องการการติดตาม
ระบุตัวเลือกสำหรับตัวตรวจจับตำแหน่ง
Swift
// Base pose detector with streaming, when depending on the PoseDetection SDK let options = PoseDetectorOptions() options.detectorMode = .stream // Accurate pose detector on static images, when depending on the // PoseDetectionAccurate SDK let options = AccuratePoseDetectorOptions() options.detectorMode = .singleImage
Objective-C
// Base pose detector with streaming, when depending on the PoseDetection SDK MLKPoseDetectorOptions *options = [[MLKPoseDetectorOptions alloc] init]; options.detectorMode = MLKPoseDetectorModeStream; // Accurate pose detector on static images, when depending on the // PoseDetectionAccurate SDK MLKAccuratePoseDetectorOptions *options = [[MLKAccuratePoseDetectorOptions alloc] init]; options.detectorMode = MLKPoseDetectorModeSingleImage;
สุดท้าย รับอินสแตนซ์ของ PoseDetector
ส่งผ่านตัวเลือกที่คุณระบุ:
Swift
let poseDetector = PoseDetector.poseDetector(options: options)
Objective-C
MLKPoseDetector *poseDetector = [MLKPoseDetector poseDetectorWithOptions:options];
2. เตรียมรูปภาพอินพุต
ในการตรวจหาท่าทาง ให้ดำเนินการดังต่อไปนี้กับรูปภาพหรือเฟรมของวิดีโอแต่ละรายการ
หากเปิดใช้โหมดสตรีม คุณต้องสร้างออบเจ็กต์ VisionImage
รายการจาก
CMSampleBuffer
วินาที
สร้างออบเจ็กต์ VisionImage
โดยใช้ UIImage
หรือ
CMSampleBuffer
หากคุณใช้ UIImage
ให้ทำตามขั้นตอนต่อไปนี้
- สร้างออบเจ็กต์
VisionImage
ด้วยUIImage
ตรวจสอบว่าได้ระบุ.orientation
ที่ถูกต้องSwift
let image = VisionImage(image: UIImage) visionImage.orientation = image.imageOrientation
Objective-C
MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image]; visionImage.orientation = image.imageOrientation;
หากคุณใช้ CMSampleBuffer
ให้ทำตามขั้นตอนต่อไปนี้
-
ระบุการวางแนวของข้อมูลภาพที่มีอยู่ใน
CMSampleBuffer
วิธีดูการวางแนวรูปภาพ
Swift
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> UIImage.Orientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftMirrored : .right case .landscapeLeft: return cameraPosition == .front ? .downMirrored : .up case .portraitUpsideDown: return cameraPosition == .front ? .rightMirrored : .left case .landscapeRight: return cameraPosition == .front ? .upMirrored : .down case .faceDown, .faceUp, .unknown: return .up } }
Objective-C
- (UIImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored : UIImageOrientationRight; case UIDeviceOrientationLandscapeLeft: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored : UIImageOrientationUp; case UIDeviceOrientationPortraitUpsideDown: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored : UIImageOrientationLeft; case UIDeviceOrientationLandscapeRight: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored : UIImageOrientationDown; case UIDeviceOrientationUnknown: case UIDeviceOrientationFaceUp: case UIDeviceOrientationFaceDown: return UIImageOrientationUp; } }
- สร้างออบเจ็กต์
VisionImage
โดยใช้CMSampleBuffer
วัตถุและการวางแนว:Swift
let image = VisionImage(buffer: sampleBuffer) image.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition)
Objective-C
MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer]; image.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
3. ประมวลผลรูปภาพ
ส่ง VisionImage
ไปยังวิธีการประมวลผลรูปภาพของตัวตรวจจับตำแหน่ง คุณสามารถใช้เมธอด process(image:)
แบบไม่พร้อมกันหรือเมธอด results()
แบบซิงโครนัสก็ได้
วิธีตรวจหาวัตถุพร้อมกัน
Swift
var results: [Pose] do { results = try poseDetector.results(in: image) } catch let error { print("Failed to detect pose with error: \(error.localizedDescription).") return } guard let detectedPoses = results, !detectedPoses.isEmpty else { print("Pose detector returned no results.") return } // Success. Get pose landmarks here.
Objective-C
NSError *error; NSArray*poses = [poseDetector resultsInImage:image error:&error]; if (error != nil) { // Error. return; } if (poses.count == 0) { // No pose detected. return; } // Success. Get pose landmarks here.
วิธีตรวจหาวัตถุแบบไม่พร้อมกัน
Swift
poseDetector.process(image) { detectedPoses, error in guard error == nil else { // Error. return } guard !detectedPoses.isEmpty else { // No pose detected. return } // Success. Get pose landmarks here. }
Objective-C
[poseDetector processImage:image completion:^(NSArray* _Nullable poses, NSError * _Nullable error) { if (error != nil) { // Error. return; } if (poses.count == 0) { // No pose detected. return; } // Success. Get pose landmarks here. }];
4. รับข้อมูลเกี่ยวกับท่าทางที่ตรวจพบ
หากมีการตรวจพบบุคคลในภาพ API การตรวจจับท่าทางจะส่งผ่าน
อาร์เรย์ของออบเจ็กต์ Pose
ไปยังตัวแฮนเดิลการเสร็จสมบูรณ์หรือแสดงผลอาร์เรย์
ขึ้นอยู่กับว่าคุณเรียกเมธอดแบบอะซิงโครนัสหรือแบบซิงโครนัส
หากบุคคลไม่ได้อยู่ในรูปภาพโดยสมบูรณ์ โมเดลจะกำหนด พิกัดของจุดสังเกตที่ขาดหายไปนอกเฟรม ทำให้พิกัดเหล่านั้นต่ำ ค่า InFrameConfidence
หากตรวจไม่พบบุคคล อาร์เรย์จะว่างเปล่า
Swift
for pose in detectedPoses { let leftAnkleLandmark = pose.landmark(ofType: .leftAnkle) if leftAnkleLandmark.inFrameLikelihood > 0.5 { let position = leftAnkleLandmark.position } }
Objective-C
for (MLKPose *pose in detectedPoses) { MLKPoseLandmark *leftAnkleLandmark = [pose landmarkOfType:MLKPoseLandmarkTypeLeftAnkle]; if (leftAnkleLandmark.inFrameLikelihood > 0.5) { MLKVision3DPoint *position = leftAnkleLandmark.position; } }
เคล็ดลับในการปรับปรุงประสิทธิภาพ
คุณภาพของผลลัพธ์จะขึ้นอยู่กับคุณภาพของรูปภาพที่ป้อน ดังนี้
- เพื่อให้ ML Kit ตรวจจับท่าทางได้อย่างแม่นยำ บุคคลในภาพควร แสดงด้วยข้อมูลพิกเซลที่เพียงพอ เพื่อประสิทธิภาพที่ดีที่สุด หัวเรื่องควร ต้องมีขนาดอย่างน้อย 256x256 พิกเซล
- ถ้าตรวจพบการโพสท่าในแอปพลิเคชันแบบเรียลไทม์ คุณอาจต้อง ขนาดโดยรวมของรูปภาพอินพุต ประมวลผลรูปภาพขนาดเล็กได้ เร็วขึ้น ดังนั้นเพื่อลดเวลาในการตอบสนอง ให้จับภาพด้วยความละเอียดที่ต่ำลง ตามข้อกำหนดในการแก้ปัญหาข้างต้น และตรวจสอบว่าหัวเรื่องนั้นเป็นไปตาม ของภาพดังกล่าวให้มากที่สุด
- การโฟกัสของรูปภาพไม่ดีอาจส่งผลต่อความแม่นยำด้วย หากคุณไม่ได้รับผลลัพธ์ ที่ยอมรับได้ ขอให้ผู้ใช้จับภาพอีกครั้ง
หากคุณต้องการใช้การตรวจจับท่าทางในแอปพลิเคชันแบบเรียลไทม์ ให้ทำตามหลักเกณฑ์ต่อไปนี้เพื่อให้ได้อัตราเฟรมที่ดีที่สุด
- ใช้ PoseDetection SDK พื้นฐานและโหมดการตรวจจับ
stream
- ลองจับภาพที่ความละเอียดต่ำลง อย่างไรก็ตาม โปรดคำนึงถึงข้อกำหนดเกี่ยวกับขนาดรูปภาพของ API นี้ด้วย
- สำหรับการประมวลผลเฟรมวิดีโอ ให้ใช้ API แบบซิงโครนัสของ
results(in:)
ในตัวตรวจจับ เรียกใช้เมธอดนี้จากแท็ก AVCaptureVideoDataOutputSampleBufferDelegate ฟังก์ชัน captureOutput(_, didOutput:from:) แสดงแบบซิงโครนัสจากเฟรมวิดีโอที่กำหนด คงค่า alwaysDiscardsLateVideoFrames ของ AVCaptureVideoDataOutput ให้เป็นค่าจริงเพื่อควบคุมการเรียกไปยังตัวตรวจจับ หากเฟรมวิดีโอใหม่พร้อมใช้งานขณะที่ตัวตรวจจับทำงานอยู่ เฟรมดังกล่าวจะหายไป - หากคุณใช้เอาต์พุตของเครื่องมือตรวจจับเพื่อวางซ้อนกราฟิกบนรูปภาพอินพุต ให้รับผลลัพธ์จาก ML Kit ก่อน จากนั้นจึงแสดงผลรูปภาพและการวางซ้อนในขั้นตอนเดียว การทำเช่นนี้จะทําให้คุณแสดงผลบนพื้นที่แสดงผลเพียงครั้งเดียวสําหรับเฟรมอินพุตที่ประมวลผลแล้วแต่ละเฟรม โปรดดู previewOverlayView และ MLKDetectionOverlayView ในตัวอย่างแอป Showcase
ขั้นตอนถัดไป
- หากต้องการเรียนรู้วิธีใช้จุดสังเกตของการโพสท่าเพื่อแยกท่าต่างๆ โปรดดูเคล็ดลับในการจัดประเภทท่าโพส
- ดูตัวอย่างการเริ่มต้นอย่างรวดเร็ว ML Kit บน GitHub สำหรับตัวอย่าง API นี้ที่ใช้งานอยู่