ML Kit में, सेल्फ़ी को सेगमेंट में बांटने के लिए ऑप्टिमाइज़ किया गया SDK टूल दिया गया है.
बिल्ड के दौरान, सेल्फ़ी सेगमेंटर की ऐसेट आपके ऐप्लिकेशन के साथ स्टैटिक रूप से लिंक होती हैं. इससे आपके ऐप्लिकेशन के डाउनलोड का साइज़ करीब 4.5 एमबी हो जाएगा और एपीआई में इंतज़ार का समय बढ़ जाएगा इनपुट इमेज के साइज़ के हिसाब से, यह 25 मि॰से॰ से 65 मि॰से॰ तक अलग-अलग हो सकता है. यह इमेज, Pixel पर मापी जाती है 4.
इसे आज़माएं
- सैंपल वाले ऐप्लिकेशन को इस्तेमाल करके देखें, इस एपीआई के इस्तेमाल का एक उदाहरण देखें.
शुरू करने से पहले
- प्रोजेक्ट-लेवल की
build.gradle
फ़ाइल में, पक्का करें कि आपनेbuildscript
औरallprojects
, दोनों सेक्शन में Google की Maven रिपॉज़िटरी को शामिल किया हो. - अपने मॉड्यूल की ऐप्लिकेशन-लेवल की Gradle फ़ाइल में ML Kit Android लाइब्रेरी के लिए डिपेंडेंसी जोड़ें, जो आम तौर पर
app/build.gradle
होती है:
dependencies {
implementation 'com.google.mlkit:segmentation-selfie:16.0.0-beta6'
}
1. सेगमेंटर का इंस्टेंस बनाना
सेगमेंटर के विकल्प
किसी इमेज को सेगमेंट में बांटने के लिए, पहले इन विकल्पों को तय करके Segmenter
का इंस्टेंस बनाएं.
डिटेक्टर मोड
Segmenter
दो मोड में काम करता है. पक्का करें कि आपने वह विकल्प चुना हो जो आपके इस्तेमाल के उदाहरण से मेल खाता है.
STREAM_MODE (default)
यह मोड, वीडियो या कैमरे से फ़्रेम स्ट्रीम करने के लिए बनाया गया है. इस मोड में, सेगमेंटर बेहतर सेगमेंटेशन नतीजे देने के लिए, पिछले फ़्रेम के नतीजों का इस्तेमाल करेगा.
SINGLE_IMAGE_MODE
यह मोड उन अकेली इमेज के लिए डिज़ाइन किया गया है जो एक-दूसरे से जुड़ी नहीं हैं. इस मोड में, सेगमेंटर हर इमेज को अलग-अलग प्रोसेस करेगा. इसमें फ़्रेम के ऊपर कोई स्मूदिंग नहीं होगी.
रॉ साइज़ मास्क चालू करें
सेगमेंटर को रॉ साइज़ मास्क लौटाने के लिए कहता है, जो मॉडल आउटपुट साइज़ से मेल खाता है.
रॉ मास्क का साइज़ (उदाहरण, 256x256) आम तौर पर इनपुट इमेज के साइज़ से कम होता है. इस विकल्प को चालू करते समय मास्क का साइज़ जानने के लिए, कृपया SegmentationMask#getWidth()
और SegmentationMask#getHeight()
को कॉल करें.
इस विकल्प को तय किए बिना, सेगमेंटर इनपुट इमेज के साइज़ से मेल खाने के लिए रॉ मास्क को फिर से स्केल करेगा. अगर आपको कस्टम रेस्केलिंग लॉजिक लागू करना है या इस्तेमाल के उदाहरण के लिए, स्केलिंग की ज़रूरत नहीं है, तो इस विकल्प का इस्तेमाल करें.
सेगमेंटर के विकल्प बताएं:
Kotlin
val options = SelfieSegmenterOptions.Builder() .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE) .enableRawSizeMask() .build()
Java
SelfieSegmenterOptions options = new SelfieSegmenterOptions.Builder() .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE) .enableRawSizeMask() .build();
Segmenter
का इंस्टेंस बनाएं. तय किए गए विकल्पों को पास करें:
Kotlin
val segmenter = Segmentation.getClient(options)
Java
Segmenter segmenter = Segmentation.getClient(options);
2. इनपुट इमेज तैयार करें
किसी इमेज को सेगमेंट में बांटने के लिए, InputImage
ऑब्जेक्ट बनाएं
किसी Bitmap
, media.Image
, ByteBuffer
, बाइट कलेक्शन से या
डिवाइस.
एक InputImage
बनाया जा सकता है
अलग-अलग सोर्स के ऑब्जेक्ट के बारे में बताया गया है. हर ऑब्जेक्ट के बारे में नीचे बताया गया है.
media.Image
का इस्तेमाल करके
InputImage
बनाने के लिए
किसी media.Image
ऑब्जेक्ट से मिला ऑब्जेक्ट, जैसे कि जब आप किसी ऑब्जेक्ट से इमेज कैप्चर करते हैं
फ़ोन का कैमरा इस्तेमाल करें, तो media.Image
ऑब्जेक्ट को पास करें और इमेज के
InputImage.fromMediaImage()
का रोटेशन.
अगर आपको
CameraX लाइब्रेरी, OnImageCapturedListener
, और
ImageAnalysis.Analyzer
क्लास, रोटेशन वैल्यू को कैलकुलेट करती हैं
आपके लिए.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
अगर इमेज का रोटेशन डिग्री देने वाली कैमरा लाइब्रेरी का इस्तेमाल नहीं किया जाता, तो डिवाइस की रोटेशन डिग्री और कैमरे के ओरिएंटेशन से इसका हिसाब लगा सकता है डिवाइस में सेंसर:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
इसके बाद, media.Image
ऑब्जेक्ट को पास करें और
InputImage.fromMediaImage()
डिग्री पर घुमाव:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
फ़ाइल यूआरआई का इस्तेमाल करना
InputImage
बनाने के लिए
किसी फ़ाइल यूआरआई से ऑब्जेक्ट को जोड़ने के लिए, ऐप्लिकेशन संदर्भ और फ़ाइल यूआरआई को
InputImage.fromFilePath()
. यह तब काम आता है, जब
उपयोगकर्ता को चुनने का प्रॉम्प्ट भेजने के लिए, ACTION_GET_CONTENT
इंटेंट का इस्तेमाल करें
अपने गैलरी ऐप्लिकेशन से मिली इमेज शामिल करेगा.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
ByteBuffer
या ByteArray
का इस्तेमाल करना
InputImage
बनाने के लिए
ByteBuffer
या ByteArray
से लिया गया ऑब्जेक्ट है, तो पहले इमेज की गणना करें
media.Image
इनपुट के लिए पहले बताई गई रोटेशन डिग्री.
इसके बाद, इमेज के साथ बफ़र या अरे का इस्तेमाल करके, InputImage
ऑब्जेक्ट बनाएं
ऊंचाई, चौड़ाई, कलर एन्कोडिंग फ़ॉर्मैट, और रोटेशन डिग्री:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Bitmap
का इस्तेमाल करके
InputImage
बनाने के लिए
Bitmap
ऑब्जेक्ट में बनाए गए ऑब्जेक्ट के लिए, यह एलान करें:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
इमेज को Bitmap
ऑब्जेक्ट से, रोटेशन डिग्री के साथ दिखाया गया है.
3. इमेज प्रोसेस करें
तैयार किए गए InputImage
ऑब्जेक्ट को Segmenter
के process
तरीके में पास करें.
Kotlin
Task<SegmentationMask> result = segmenter.process(image) .addOnSuccessListener { results -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<SegmentationMask> result = segmenter.process(image) .addOnSuccessListener( new OnSuccessListener<SegmentationMask>() { @Override public void onSuccess(SegmentationMask mask) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. सेगमेंटेशन का नतीजा पाना
सेगमेंट करने पर, आपको इस तरह का नतीजा मिल सकता है:
Kotlin
val mask = segmentationMask.getBuffer() val maskWidth = segmentationMask.getWidth() val maskHeight = segmentationMask.getHeight() for (val y = 0; y < maskHeight; y++) { for (val x = 0; x < maskWidth; x++) { // Gets the confidence of the (x,y) pixel in the mask being in the foreground. val foregroundConfidence = mask.getFloat() } }
Java
ByteBuffer mask = segmentationMask.getBuffer(); int maskWidth = segmentationMask.getWidth(); int maskHeight = segmentationMask.getHeight(); for (int y = 0; y < maskHeight; y++) { for (int x = 0; x < maskWidth; x++) { // Gets the confidence of the (x,y) pixel in the mask being in the foreground. float foregroundConfidence = mask.getFloat(); } }
विभाजन परिणामों का उपयोग करने के तरीके के पूर्ण उदाहरण के लिए, कृपया ML Kit क्विकस्टार्ट सैंपल.
परफ़ॉर्मेंस को बेहतर बनाने के लिए सलाह
आपके नतीजों की क्वालिटी, इनपुट इमेज की क्वालिटी पर निर्भर करती है:
- एमएल किट में सेगमेंटेशन का सटीक नतीजा पाने के लिए, इमेज कम से कम 256x256 पिक्सल की होनी चाहिए.
- खराब इमेज फ़ोकस की वजह से भी सटीक जानकारी पर असर पड़ सकता है. अगर आपको स्वीकार किए जाने वाले नतीजे नहीं मिलते, तो उपयोगकर्ता से इमेज दोबारा कैप्चर करने के लिए कहें.
अगर आपको रीयल-टाइम ऐप्लिकेशन में सेगमेंटेशन का इस्तेमाल करना है, तो सबसे सही फ़्रेम रेट हासिल करने के लिए, इन दिशा-निर्देशों का पालन करें:
STREAM_MODE
का इस्तेमाल करें.- कम रिज़ॉल्यूशन वाली इमेज कैप्चर करें. हालांकि, इस एपीआई की इमेज डाइमेंशन से जुड़ी ज़रूरी शर्तों का भी ध्यान रखें.
- रॉ साइज़ मास्क का विकल्प चालू करें और सभी स्केलिंग लॉजिक को एक साथ जोड़ें. उदाहरण के लिए, पहले अपने इनपुट इमेज साइज़ से मैच करने के लिए, एपीआई को मास्क का साइज़ बदलने की अनुमति देने के बजाय, डिसप्ले के व्यू साइज़ से मैच करने के लिए उसे फिर से रीस्केल करें. इसके लिए, सिर्फ़ रॉ साइज़ मास्क का अनुरोध करें और इन दो चरणों को एक साथ मिलाएं.
- अगर आपको
Camera
याcamera2
एपीआई, डिटेक्टर को कॉल थ्रॉटल करती हूँ. अगर किसी नए वीडियो पर डिटेक्टर के चलने के दौरान फ़्रेम उपलब्ध हो जाता है, फ़्रेम छोड़ दें. ज़्यादा जानकारी के लिए, उदाहरण के लिए, क्विकस्टार्ट सैंपल ऐप्लिकेशन मेंVisionProcessorBase
क्लास. - अगर
CameraX
एपीआई का इस्तेमाल किया जाता है, तो पक्का करें कि बैक प्रेशर स्ट्रेटजी अपनी डिफ़ॉल्ट वैल्यू पर सेट हैImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
. इससे यह गारंटी मिलती है कि विश्लेषण के लिए एक बार में सिर्फ़ एक इमेज डिलीवर की जाएगी. अगर और इमेज जब एनालाइज़र व्यस्त होता है, तो उसे जनरेट कर दिया जाता है. उसे अपने-आप हटा दिया जाता है. डिलीवरी. जिस इमेज की जांच की जा रही है उसे बंद करने के लिए, इस नंबर पर कॉल करें Imageप्रॉक्सी.close(), अगली सबसे नई इमेज डिलीवर की जाएगी. - अगर ग्राफ़िक ओवरले करने के लिए डिटेक्टर के आउटपुट का इस्तेमाल किया जाता है, तो
इनपुट इमेज को चुनने के बाद, पहले एमएल किट से नतीजा पाएं. इसके बाद, इमेज को रेंडर करें
और ओवरले को एक ही चरण में पूरा करें. यह डिसप्ले की सतह पर रेंडर हो जाता है
हर इनपुट फ़्रेम के लिए सिर्फ़ एक बार. ज़्यादा जानकारी के लिए,
CameraSourcePreview
और उदाहरण के लिए, क्विकस्टार्ट सैंपल ऐप्लिकेशन मेंGraphicOverlay
क्लास. - Camera2 API का इस्तेमाल करने पर, इमेज यहां कैप्चर करें
ImageFormat.YUV_420_888
फ़ॉर्मैट. अगर पुराने Camera API का इस्तेमाल किया जा रहा है, तो इमेज यहां कैप्चर करेंImageFormat.NV21
फ़ॉर्मैट.