ML Kit to zoptymalizowany pakiet SDK do segmentacji selfie.
Zasoby segmentu selfie są statycznie połączone z Twoją aplikacją w czasie tworzenia kampanii. Zwiększy to rozmiar pobieranej aplikacji o około 4,5 MB, a opóźnienie interfejsu API może waha się od 25 ms do 65 ms w zależności od rozmiaru obrazu wejściowego (mierzonego na Pixelu) 4.
Wypróbuj
- Wypróbuj przykładową aplikację, aby: zobaczysz przykład użycia tego interfejsu API.
Zanim zaczniesz
- W pliku
build.gradle
na poziomie projektu dodaj repozytorium Google Maven w sekcjachbuildscript
iallprojects
. - Dodaj zależności bibliotek ML Kit na Androida do pliku Gradle na poziomie aplikacji modułu, którym jest zwykle
app/build.gradle
:
dependencies {
implementation 'com.google.mlkit:segmentation-selfie:16.0.0-beta6'
}
1. Tworzenie instancji segmentacji
Opcje segmentowania
Aby segmentować obraz, najpierw utwórz instancję Segmenter
, określając opcje poniżej.
Tryb wykrywania
Segmenter
działa w 2 trybach. Wybierz taki, który pasuje do Twojego przypadku użycia.
STREAM_MODE (default)
Ten tryb jest przeznaczony do strumieniowania klatek filmu lub kamery. W tym trybie segmenter korzysta z wyników z poprzednich klatek, aby zwrócić płynniejszy wynik segmentacji.
SINGLE_IMAGE_MODE
Ten tryb jest przeznaczony do pojedynczych zdjęć, które nie są ze sobą powiązane. W tym trybie segmenter przetwarza każde zdjęcie niezależnie, bez wygładzania klatek.
Włącz maskę rozmiaru nieprzetworzonego
Prosi segmentację o zwrócenie maski rozmiaru nieprzetworzonego, która odpowiada rozmiarowi wyjściowemu modelu.
Rozmiar nieprzetworzonej maski (np. 256 x 256) jest zwykle mniejszy niż rozmiar obrazu wejściowego. Po włączeniu tej opcji wywołaj SegmentationMask#getWidth()
i SegmentationMask#getHeight()
, aby uzyskać rozmiar maski.
Jeśli nie określisz tej opcji, segmenter przeskaluje maskę nieprzetworzoną, aby dopasować ją do rozmiaru obrazu wejściowego. Rozważ użycie tej opcji, jeśli chcesz zastosować niestandardową logikę zmiany skali lub ponowne skalowanie nie jest potrzebne w Twoim przypadku użycia.
Określ opcje segmentowania:
Kotlin
val options = SelfieSegmenterOptions.Builder() .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE) .enableRawSizeMask() .build()
Java
SelfieSegmenterOptions options = new SelfieSegmenterOptions.Builder() .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE) .enableRawSizeMask() .build();
Utwórz instancję Segmenter
. Prześlij określone opcje:
Kotlin
val segmenter = Segmentation.getClient(options)
Java
Segmenter segmenter = Segmentation.getClient(options);
2. Przygotowywanie obrazu wejściowego
Aby przeprowadzić segmentację obrazu, utwórz obiekt InputImage
z obiektu Bitmap
, media.Image
, ByteBuffer
, tablicy bajtów lub pliku w
urządzenia.
Możesz utworzyć InputImage
z różnych źródeł, każdy z nich objaśniamy poniżej.
Korzystanie z: media.Image
Aby utworzyć InputImage
z obiektu media.Image
, np. podczas przechwytywania obrazu z
z aparatu urządzenia, przekaż obiekt media.Image
i obiekt obrazu
w kierunku InputImage.fromMediaImage()
.
Jeśli używasz tagu
CameraX, OnImageCapturedListener
oraz
ImageAnalysis.Analyzer
klasy obliczają wartość rotacji
dla Ciebie.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
Jeśli nie korzystasz z biblioteki aparatu, która określa kąt obrotu obrazu, może go obliczyć na podstawie stopnia obrotu urządzenia i orientacji aparatu czujnik w urządzeniu:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Następnie przekaż obiekt media.Image
oraz
wartość stopnia obrotu na InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Za pomocą identyfikatora URI pliku
Aby utworzyć InputImage
obiektu z identyfikatora URI pliku, przekaż kontekst aplikacji oraz identyfikator URI pliku do
InputImage.fromFilePath()
Jest to przydatne, gdy
użyj intencji ACTION_GET_CONTENT
, aby zachęcić użytkownika do wyboru
obraz z aplikacji Galeria.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Przy użyciu: ByteBuffer
lub ByteArray
Aby utworzyć InputImage
obiektu z ByteBuffer
lub ByteArray
, najpierw oblicz wartość obrazu
stopień obrotu zgodnie z wcześniejszym opisem dla danych wejściowych media.Image
.
Następnie utwórz obiekt InputImage
z buforem lub tablicą oraz
wysokość, szerokość, format kodowania kolorów i stopień obrotu:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Korzystanie z: Bitmap
Aby utworzyć InputImage
z obiektu Bitmap
, wypełnij tę deklarację:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
Obraz jest reprezentowany przez obiekt Bitmap
wraz z informacją o obróceniu w stopniach.
3. Przetwarzanie zdjęcia
Przekaż przygotowany obiekt InputImage
do metody process
interfejsu Segmenter
.
Kotlin
Task<SegmentationMask> result = segmenter.process(image) .addOnSuccessListener { results -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<SegmentationMask> result = segmenter.process(image) .addOnSuccessListener( new OnSuccessListener<SegmentationMask>() { @Override public void onSuccess(SegmentationMask mask) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. Uzyskiwanie wyników podziału na segmenty
Wynik podziału na segmenty możesz uzyskać w ten sposób:
Kotlin
val mask = segmentationMask.getBuffer() val maskWidth = segmentationMask.getWidth() val maskHeight = segmentationMask.getHeight() for (val y = 0; y < maskHeight; y++) { for (val x = 0; x < maskWidth; x++) { // Gets the confidence of the (x,y) pixel in the mask being in the foreground. val foregroundConfidence = mask.getFloat() } }
Java
ByteBuffer mask = segmentationMask.getBuffer(); int maskWidth = segmentationMask.getWidth(); int maskHeight = segmentationMask.getHeight(); for (int y = 0; y < maskHeight; y++) { for (int x = 0; x < maskWidth; x++) { // Gets the confidence of the (x,y) pixel in the mask being in the foreground. float foregroundConfidence = mask.getFloat(); } }
Pełen przykład korzystania z wyników segmentacji znajdziesz Przykład krótkiego wprowadzenia do ML Kit.
Wskazówki dotyczące poprawy skuteczności
Jakość obrazu zależy od jakości obrazu wejściowego:
- Aby narzędzie ML Kit mogło uzyskać dokładny wynik podziału na segmenty, obraz powinien mieć co najmniej 256 × 256 pikseli.
- Słaba ostrość obrazu również może mieć wpływ na dokładność. Jeśli wyniki nie są zadowalające, poproś użytkownika o ponowne wykonanie zdjęcia.
Jeśli chcesz zastosować segmentację w aplikacji w czasie rzeczywistym, postępuj zgodnie z tymi wskazówkami, aby uzyskać najlepszą liczbę klatek:
- Użyj konta
STREAM_MODE
. - Rozważ robienie zdjęć w niższej rozdzielczości. Pamiętaj jednak o wymaganiach tego interfejsu API dotyczących wymiarów zdjęć.
- Rozważ włączenie opcji maski rozmiaru nieprzetworzonego i połączenie wszystkich procesów skalowania. Na przykład zamiast pozwolić interfejsowi API na przeskalowanie maski, aby najpierw dopasować ją do rozmiaru obrazu wejściowego, a potem ponownie przeskalować ją do rozmiaru widoku, po prostu poproś o maskę rozmiaru nieprzetworzonego i połącz te 2 kroki w jeden.
- Jeśli używasz tagu
Camera
lubcamera2
API, ograniczanie wywołań detektora. Jeśli nowy film ramka stanie się dostępna, gdy detektor będzie aktywny, upuść ją. ZobaczVisionProcessorBase
w przykładowej aplikacji z krótkim wprowadzeniem. - Jeśli używasz interfejsu API
CameraX
, upewnij się, że strategia obciążenia wstecznego jest ustawiona na wartość domyślną .ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
Gwarantuje to, że do analizy zostanie dostarczony tylko 1 obraz naraz. Jeśli więcej obrazów generowane, gdy analizator jest zajęty, są usuwane automatycznie i nie są umieszczane w kolejce . Po zamknięciu analizowanego obrazu przez wywołanie ImageProxy.close(), zostanie wyświetlony następny najnowszy obraz. - Jeśli użyjesz danych wyjściowych detektora do nakładania grafiki na
obrazu wejściowego, najpierw pobierz wynik z ML Kit, a następnie wyrenderuj obraz
i nakładanie nakładek w jednym kroku. Powoduje to wyrenderowanie na powierzchni wyświetlania
tylko raz na każdą ramkę wejściową. Zobacz
CameraSourcePreview
i .GraphicOverlay
w przykładowej aplikacji z krótkim wprowadzeniem. - Jeśli korzystasz z interfejsu API Camera2, rób zdjęcia w
Format:
ImageFormat.YUV_420_888
. Jeśli używasz starszej wersji interfejsu Camera API, rób zdjęcia w Format:ImageFormat.NV21
.