تصنيف الصورة الذاتية باستخدام "حزمة تعلّم الآلة" على نظام التشغيل Android

توفّر حزمة ML Kit حزمة تطوير برامج (SDK) محسّنة لتقسيم الصور الذاتية.

يتم ربط مواد عرض أداة "تقسيم الصور الذاتية" بشكل ثابت بتطبيقك في وقت الإنشاء. سيؤدي ذلك إلى زيادة حجم تنزيل تطبيقك بمقدار 4.5 ميغابايت تقريبًا، ويمكن أن يختلف وقت استجابة واجهة برمجة التطبيقات من 25 ملي ثانية إلى 65 ملي ثانية استنادًا إلى حجم الصورة المُدخلة، كما تم قياسه على هاتف Pixel 4.

جرّبه الآن

  • يمكنك تجربة نموذج التطبيق لاطلاع على مثال على استخدام واجهة برمجة التطبيقات هذه.

قبل البدء

  1. في ملف build.gradle على مستوى المشروع، احرص على تضمين مستودع Maven من Google في كلّ من قسمَي buildscript وallprojects.
  2. أضِف الملحقات لمكتبات ML Kit لنظام التشغيل Android إلى ملف Gradle على مستوى التطبيق الخاص بالوحدة، والذي يكون عادةً app/build.gradle:
dependencies {
  implementation 'com.google.mlkit:segmentation-selfie:16.0.0-beta6'
}

1. إنشاء مثيل لفئة Segmenter

خيارات أداة التقسيم

لإجراء عملية تقسيم على صورة، أنشئ أولاً مثيلًا من Segmenter من خلال تحديد الخيارات التالية.

وضع أداة الرصد

يعمل Segmenter بوضعَين. احرص على اختيار الإعدادات التي تناسب حالة الاستخدام.

STREAM_MODE (default)

تم تصميم هذا الوضع لبث اللقطات من الفيديو أو الكاميرا. في هذا الوضع، سيستفيد مُقسِّم الفيديو من النتائج من اللقطات السابقة لعرض نتائج أكثر سلاسة.

SINGLE_IMAGE_MODE

تم تصميم هذا الوضع للصور الفردية غير ذات الصلة. في هذا الوضع، ستعالج أداة تقسيم الفيديو كل صورة بشكل مستقل، بدون تمويه اللقطات.

تفعيل قناع الحجم الأصلي

يطلب من أداة التقسيم عرض قناع الحجم الأوّلي الذي يتطابق مع حجم إخراج النموذج.

يكون حجم القناع الأوّلي (مثلاً 256x256) عادةً أصغر من حجم الصورة المُدخلة. يُرجى الاتصال برقمَي SegmentationMask#getWidth() وSegmentationMask#getHeight() للحصول على حجم القناع عند تفعيل هذا الخيار.

في حال عدم تحديد هذا الخيار، ستعيد أداة التقسيم قياس القناع الأوّلي لمطابقة حجم الصورة المُدخلة. ننصحك باستخدام هذا الخيار إذا كنت تريد تطبيق منطق مخصّص لإعادة القياس أو إذا لم تكن إعادة القياس مطلوبة لحالة الاستخدام.

حدِّد خيارات أداة التقسيم:

KotlinJava
val options =
        SelfieSegmenterOptions.Builder()
            .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE)
            .enableRawSizeMask()
            .build()
SelfieSegmenterOptions options =
        new SelfieSegmenterOptions.Builder()
            .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE)
            .enableRawSizeMask()
            .build();

أنشئ مثيلًا من Segmenter. نقْل الخيارات التي حدّدتها:

KotlinJava
val segmenter = Segmentation.getClient(options)
Segmenter segmenter = Segmentation.getClient(options);

2. تجهيز صورة الإدخال

لإجراء عملية تقسيم على صورة، أنشئ عنصرًا من النوع InputImage من Bitmap أو media.Image أو ByteBuffer أو صفيف بايت أو ملف على الجهاز.

يمكنك إنشاء عنصر InputImage من مصادر مختلفة، وسيتم شرح كل مصدر أدناه.

استخدام media.Image

لإنشاء عنصر InputImage من عنصر media.Image، مثلاً عند التقاط صورة من كاميرا الجهاز، عليك تمرير عنصر media.Image ودرجة دوران الصورة إلى InputImage.fromMediaImage().

إذا كنت تستخدِم مكتبة CameraX، تحتسِب فئتَا OnImageCapturedListener و ImageAnalysis.Analyzer قيمة التدوير نيابةً عنك.

KotlinJava
private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}
private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

إذا كنت لا تستخدم مكتبة كاميرا تمنحك درجة دوران الصورة، يمكنك احتسابها من درجة دوران الجهاز واتجاه كاميرا الاستشعار في الجهاز:

KotlinJava
private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}
private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

بعد ذلك، مرِّر عنصر media.Image وقيمة درجة الدوران إلى InputImage.fromMediaImage():

KotlinJava
val image = InputImage.fromMediaImage(mediaImage, rotation)
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

استخدام عنوان URL للملف

لإنشاء عنصر InputImage ، من معرّف موارد منتظم لملف، عليك تمرير سياق التطبيق ومعرّف الموارد المنتظم للملف إلى InputImage.fromFilePath(). يكون ذلك مفيدًا عند استخدام نية ACTION_GET_CONTENT لطلب تحديد صورة من تطبيق معرض الصور.

KotlinJava
val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}
InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

استخدام ByteBuffer أو ByteArray

لإنشاء عنصر InputImage من ByteBuffer أو ByteArray، يجب أولاً احتساب درجة دوران الصورة كما هو موضّح سابقًا لإدخال media.Image. بعد ذلك، أنشئ عنصر InputImage باستخدام المخزن المؤقت أو الصفيف، بالإضافة إلى ارتفاع الصورة وعرضها وتنسيق ترميز الألوان ودرجة دورانها:

KotlinJava
val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

استخدام Bitmap

لإنشاء عنصر InputImage من عنصر Bitmap، أدخِل التعريف التالي:

KotlinJava
val image = InputImage.fromBitmap(bitmap, 0)
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

يتم تمثيل الصورة بعنصر Bitmap مع درجات الدوران.

3- معالجة الصورة

نقْل عنصر InputImage المُعدّ إلى طريقة process في Segmenter.

KotlinJava
Task<SegmentationMask> result = segmenter.process(image)
       .addOnSuccessListener { results ->
           // Task completed successfully
           // ...
       }
       .addOnFailureListener { e ->
           // Task failed with an exception
           // ...
       }
Task<SegmentationMask> result =
        segmenter.process(image)
                .addOnSuccessListener(
                        new OnSuccessListener<SegmentationMask>() {
                            @Override
                            public void onSuccess(SegmentationMask mask) {
                                // Task completed successfully
                                // ...
                            }
                        })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

4. الحصول على نتيجة التقسيم

يمكنك الحصول على نتيجة التقسيم على النحو التالي:

KotlinJava
val mask = segmentationMask.getBuffer()
val maskWidth = segmentationMask.getWidth()
val maskHeight = segmentationMask.getHeight()

for (val y = 0; y < maskHeight; y++) {
  for (val x = 0; x < maskWidth; x++) {
    // Gets the confidence of the (x,y) pixel in the mask being in the foreground.
    val foregroundConfidence = mask.getFloat()
  }
}
ByteBuffer mask = segmentationMask.getBuffer();
int maskWidth = segmentationMask.getWidth();
int maskHeight = segmentationMask.getHeight();

for (int y = 0; y < maskHeight; y++) {
  for (int x = 0; x < maskWidth; x++) {
    // Gets the confidence of the (x,y) pixel in the mask being in the foreground.
    float foregroundConfidence = mask.getFloat();
  }
}

للحصول على مثال كامل على كيفية استخدام نتائج التجزئة، يُرجى الاطّلاع على نموذج البدء السريع لمجموعة ML Kit.

نصائح لتحسين الأداء

تعتمد جودة النتائج على جودة الصورة المُدخلة:

  • لكي تحصل حزمة ML Kit على نتيجة تقسيم دقيقة، يجب أن تكون الصورة بدقة 256×256 بكسل على الأقل.
  • يمكن أن يؤثر أيضًا عدم تركيز الصورة في الدقة. إذا لم تحصل على نتائج مقبولة، اطلب من المستخدم إعادة التقاط الصورة.

إذا كنت تريد استخدام التقسيم في تطبيق يعمل في الوقت الفعلي، اتّبِع الإرشادات التالية لتحقيق أفضل معدّلات عرض اللقطات:

  • استخدام حساب "STREAM_MODE".
  • ننصحك بالتقاط الصور بدرجة دقة أقل. ومع ذلك، يجب أيضًا مراعاة متطلبات أبعاد الصورة في واجهة برمجة التطبيقات هذه.
  • ننصحك بتفعيل خيار قناع الحجم الأوّلي ودمج كل منطق إعادة الحجم معًا. على سبيل المثال، بدلاً من السماح لواجهة برمجة التطبيقات بإعادة تغيير حجم القناع لمطابقة حجم الصورة المُدخلة أولاً ثم إعادة تغيير حجمه مرة أخرى لمطابقة حجم العرض، ما عليك سوى طلب قناع الحجم الأوّلي ودمج هاتين الخطوتَين في خطوتَين.
  • إذا كنت تستخدم واجهة برمجة التطبيقات Camera أو camera2، يمكنك الحد من عدد طلبات البيانات المرسَلة إلى أداة رصد الأداء. إذا توفّر إطار فيديو جديد أثناء تشغيل أداة الكشف، يمكنك إسقاط الإطار. يمكنك الاطّلاع على فئة VisionProcessorBase في تطبيق نموذج البدء السريع للحصول على مثال.
  • إذا كنت تستخدِم واجهة برمجة التطبيقات CameraX، تأكَّد من ضبط استراتيجية الضغط الخلفي على قيمتها التلقائية ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. يضمن ذلك إرسال صورة واحدة فقط للتحليل في كل مرة. إذا تم إنشاء المزيد من الصور عندما يكون المحلّل مشغولاً، سيتم تجاهلها تلقائيًا ولن يتم وضعها في قائمة الانتظار لإرسالها. بعد إغلاق الصورة التي يتم تحليلها من خلال استدعاء ‎(ImageProxy.close())‎، سيتم إرسال أحدث صورة تالية.
  • إذا كنت تستخدِم ناتج أداة الكشف لوضع الرسومات فوق صورة الإدخال، يمكنك أولاً الحصول على النتيجة من ML Kit، ثم عرض الصورة ووضعها فوق الصورة الأصلية في خطوة واحدة. ويتم عرض هذا المحتوى على سطح العرض مرّة واحدة فقط لكل إطار إدخال. يمكنك الاطّلاع على مثال في فئة CameraSourcePreview وفئة GraphicOverlay في تطبيق نموذج البدء السريع.
  • إذا كنت تستخدم واجهة برمجة التطبيقات Camera2 API، يمكنك التقاط الصور بتنسيق ImageFormat.YUV_420_888. إذا كنت تستخدم الإصدار القديم من Camera API، يمكنك التقاط الصور بتنسيق ImageFormat.NV21.