ML Kit, सेल्फ़ी के सेगमेंटेशन के लिए ऑप्टिमाइज़ किया गया SDK टूल उपलब्ध कराता है.
सेल्फ़ी सेगमेंटर एसेट, बिल्ड के समय आपके ऐप्लिकेशन से स्टैटिक तौर पर लिंक होती हैं. इससे आपके ऐप्लिकेशन के डाउनलोड साइज़ में करीब 4.5 एमबी की बढ़ोतरी होगी. साथ ही, इनपुट इमेज के साइज़ के आधार पर, एपीआई के इंतज़ार का समय 25 से 65 मिलीसेकंड के बीच हो सकता है. यह समय, Pixel 4 पर मेज़र किया गया है.
इसे आज़माएं
- इस एपीआई के इस्तेमाल का उदाहरण देखने के लिए, सैंपल ऐप्लिकेशन आज़माएं.
शुरू करने से पहले
- प्रोजेक्ट-लेवल की
build.gradle
फ़ाइल में,buildscript
औरallprojects
, दोनों सेक्शन में Google की मेवन रिपॉज़िटरी शामिल करना न भूलें. - अपने मॉड्यूल की ऐप्लिकेशन-लेवल की Gradle फ़ाइल में, ML Kit की Android लाइब्रेरी की डिपेंडेंसी जोड़ें. आम तौर पर, यह फ़ाइल
app/build.gradle
होती है:
dependencies {
implementation 'com.google.mlkit:segmentation-selfie:16.0.0-beta6'
}
1. Segmenter का इंस्टेंस बनाना
सेगमेंटर के विकल्प
किसी इमेज को सेगमेंट में बांटने के लिए, सबसे पहले नीचे दिए गए विकल्पों को चुनकर Segmenter
का एक इंस्टेंस बनाएं.
डिटेक्टर मोड
Segmenter
दो मोड में काम करता है. पक्का करें कि आपने वह विकल्प चुना हो जो आपके काम के हिसाब से हो.
STREAM_MODE (default)
इस मोड को वीडियो या कैमरे से फ़्रेम स्ट्रीम करने के लिए डिज़ाइन किया गया है. इस मोड में, सेगमेंटर पिछले फ़्रेम के नतीजों का फ़ायदा उठाकर, बेहतर सेगमेंटेशन के नतीजे दिखाएगा.
SINGLE_IMAGE_MODE
यह मोड, एक-दूसरे से मिलती-जुलती नहीं होने वाली इमेज के लिए डिज़ाइन किया गया है. इस मोड में, सेगमेंटर हर इमेज को अलग से प्रोसेस करेगा. साथ ही, फ़्रेम को स्मूद नहीं करेगा.
रॉ साइज़ मास्क की सुविधा चालू करना
सेगमेंटर से, मॉडल के आउटपुट साइज़ से मेल खाने वाला रॉ साइज़ मास्क दिखाने के लिए कहता है.
आम तौर पर, रॉ मास्क का साइज़ (उदाहरण के लिए, 256x256) इनपुट इमेज के साइज़ से छोटा होता है. इस विकल्प को चालू करते समय, मास्क का साइज़ पाने के लिए कृपया SegmentationMask#getWidth()
और SegmentationMask#getHeight()
को कॉल करें.
इस विकल्प को तय किए बिना, सेगमेंटर, इनपुट इमेज के साइज़ से मैच करने के लिए रॉ मास्क का साइज़ फिर से तय करेगा. अगर आपको अपने हिसाब से रीस्केलिंग लॉजिक लागू करना है या आपके इस्तेमाल के उदाहरण के लिए रीस्केलिंग की ज़रूरत नहीं है, तो इस विकल्प का इस्तेमाल करें.
सेगमेंट बनाने के विकल्पों की जानकारी दें:
val options = SelfieSegmenterOptions.Builder() .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE) .enableRawSizeMask() .build()
SelfieSegmenterOptions options = new SelfieSegmenterOptions.Builder() .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE) .enableRawSizeMask() .build();
Segmenter
का इंस्टेंस बनाएं. आपने जो विकल्प तय किए हैं उन्हें पास करें:
val segmenter = Segmentation.getClient(options)
Segmenter segmenter = Segmentation.getClient(options);
2. इनपुट इमेज तैयार करना
किसी इमेज पर सेगमेंटेशन करने के लिए, डिवाइस पर मौजूद Bitmap
, media.Image
, ByteBuffer
, बाइट कलेक्शन या फ़ाइल में से किसी एक से InputImage
ऑब्जेक्ट बनाएं.
अलग-अलग सोर्स से InputImage
ऑब्जेक्ट बनाया जा सकता है. इनमें से हर सोर्स के बारे में यहां बताया गया है.
media.Image
का इस्तेमाल करना
media.Image
ऑब्जेक्ट से InputImage
ऑब्जेक्ट बनाने के लिए, media.Image
ऑब्जेक्ट और इमेज के रोटेशन को InputImage.fromMediaImage()
में पास करें. जैसे, जब किसी डिवाइस के कैमरे से इमेज कैप्चर की जाती है.
अगर
CameraX लाइब्रेरी का इस्तेमाल किया जाता है, तो OnImageCapturedListener
और ImageAnalysis.Analyzer
क्लास आपके लिए रोटेशन वैल्यू का हिसाब लगाती हैं.
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
अगर आपने ऐसी कैमरा लाइब्रेरी का इस्तेमाल नहीं किया है जो इमेज के घूमने की डिग्री बताती है, तो डिवाइस के घूमने की डिग्री और डिवाइस में कैमरे के सेंसर के ओरिएंटेशन से इसका हिसाब लगाया जा सकता है:
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
इसके बाद, media.Image
ऑब्जेक्ट और InputImage.fromMediaImage()
में घुमाव की डिग्री की वैल्यू पास करें:
val image = InputImage.fromMediaImage(mediaImage, rotation)
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
फ़ाइल के यूआरआई का इस्तेमाल करना
फ़ाइल यूआरआई से InputImage
ऑब्जेक्ट बनाने के लिए, ऐप्लिकेशन कॉन्टेक्स्ट और फ़ाइल यूआरआई को InputImage.fromFilePath()
में पास करें. यह तब काम आता है, जब उपयोगकर्ता को अपने गैलरी ऐप्लिकेशन से कोई इमेज चुनने के लिए कहने के लिए, ACTION_GET_CONTENT
इंटेंट का इस्तेमाल किया जाता है.
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
InputImage image;
try {
image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
e.printStackTrace();
}
ByteBuffer
या ByteArray
का इस्तेमाल करना
ByteBuffer
या ByteArray
से InputImage
आइटम बनाने के लिए, सबसे पहले इमेज के घूमने की डिग्री का हिसाब लगाएं. यह हिसाब लगाने का तरीका, media.Image
इनपुट के लिए पहले बताया गया है.
इसके बाद, बफ़र या ऐरे के साथ InputImage
ऑब्जेक्ट बनाएं. साथ ही, इमेज की
ऊंचाई, चौड़ाई, कलर कोडिंग फ़ॉर्मैट, और घुमाव की डिग्री भी डालें:
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Bitmap
का इस्तेमाल करना
Bitmap
ऑब्जेक्ट से InputImage
ऑब्जेक्ट बनाने के लिए, यह एलान करें:
val image = InputImage.fromBitmap(bitmap, 0)
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
इमेज को घुमाने के डिग्री के साथ Bitmap
ऑब्जेक्ट से दिखाया जाता है.
3. इमेज को प्रोसेस करना
तैयार किए गए InputImage
ऑब्जेक्ट को Segmenter
के process
तरीके में पास करें.
Task<SegmentationMask> result = segmenter.process(image) .addOnSuccessListener { results -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Task<SegmentationMask> result = segmenter.process(image) .addOnSuccessListener( new OnSuccessListener<SegmentationMask>() { @Override public void onSuccess(SegmentationMask mask) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. सेगमेंटेशन का नतीजा पाना
सेगमेंटेशन का नतीजा इस तरह देखा जा सकता है:
val mask = segmentationMask.getBuffer() val maskWidth = segmentationMask.getWidth() val maskHeight = segmentationMask.getHeight() for (val y = 0; y < maskHeight; y++) { for (val x = 0; x < maskWidth; x++) { // Gets the confidence of the (x,y) pixel in the mask being in the foreground. val foregroundConfidence = mask.getFloat() } }
ByteBuffer mask = segmentationMask.getBuffer(); int maskWidth = segmentationMask.getWidth(); int maskHeight = segmentationMask.getHeight(); for (int y = 0; y < maskHeight; y++) { for (int x = 0; x < maskWidth; x++) { // Gets the confidence of the (x,y) pixel in the mask being in the foreground. float foregroundConfidence = mask.getFloat(); } }
सेगमेंटेशन के नतीजों का इस्तेमाल करने का पूरा उदाहरण देखने के लिए, कृपया ML Kit का तुरंत इस्तेमाल करने का सैंपल देखें.
परफ़ॉर्मेंस को बेहतर बनाने के लिए सलाह
नतीजों की क्वालिटी, इनपुट इमेज की क्वालिटी पर निर्भर करती है:
- ML Kit को सेगमेंटेशन का सटीक नतीजा देने के लिए, इमेज कम से कम 256x256 पिक्सल की होनी चाहिए.
- इमेज का फ़ोकस खराब होने पर भी नतीजों की सटीकता पर असर पड़ सकता है. अगर आपको सही नतीजे नहीं मिलते हैं, तो उपयोगकर्ता से इमेज फिर से लेने के लिए कहें.
अगर आपको रीयल-टाइम ऐप्लिकेशन में सेगमेंटेशन का इस्तेमाल करना है, तो सबसे अच्छा फ़्रेम रेट पाने के लिए इन दिशा-निर्देशों का पालन करें:
STREAM_MODE
का इस्तेमाल करें.- इमेज को कम रिज़ॉल्यूशन में कैप्चर करें. हालांकि, इस एपीआई के लिए इमेज के डाइमेंशन से जुड़ी ज़रूरी शर्तों का भी ध्यान रखें.
- रॉ साइज़ मास्क के विकल्प को चालू करें और रीस्केलिंग के सभी लॉजिक को एक साथ जोड़ें. उदाहरण के लिए, एपीआई को पहले इनपुट इमेज के साइज़ से मैच करने के लिए मास्क का साइज़ बदलने और फिर डिसप्ले के लिए व्यू के साइज़ से मैच करने के लिए, फिर से साइज़ बदलने की अनुमति देने के बजाय, सिर्फ़ रॉ साइज़ मास्क का अनुरोध करें और इन दोनों चरणों को एक में जोड़ें.
- अगर
Camera
याcamera2
एपीआई का इस्तेमाल किया जाता है, तो डिटेक्टर को कॉल को कम करें. अगर डिटेक्टर चालू होने के दौरान कोई नया वीडियो फ़्रेम उपलब्ध होता है, तो फ़्रेम को छोड़ दें. उदाहरण के लिए, क्विकस्टार्ट सैंपल ऐप्लिकेशन मेंVisionProcessorBase
क्लास देखें. - अगर
CameraX
एपीआई का इस्तेमाल किया जाता है, तो पक्का करें कि बैकप्रेशर की रणनीति, डिफ़ॉल्ट वैल्यू पर सेट होImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
. इससे यह पक्का होता है कि विश्लेषण के लिए एक बार में सिर्फ़ एक इमेज डिलीवर की जाएगी. अगर विश्लेषक व्यस्त होने पर ज़्यादा इमेज जनरेट होती हैं, तो वे अपने-आप हट जाएंगी और डिलीवरी के लिए कतार में नहीं जोड़ी जाएंगी. ImageProxy.close() को कॉल करके, जिस इमेज का विश्लेषण किया जा रहा है उसे बंद करने के बाद, अगली नई इमेज डिलीवर की जाएगी. - अगर इनपुट इमेज पर ग्राफ़िक ओवरले करने के लिए, डिटेक्टर के आउटपुट का इस्तेमाल किया जाता है, तो पहले ML Kit से नतीजा पाएं. इसके बाद, एक ही चरण में इमेज को रेंडर करें और ओवरले करें. यह हर इनपुट फ़्रेम के लिए, डिसप्ले प्लैटफ़ॉर्म पर सिर्फ़ एक बार रेंडर होता है. उदाहरण के लिए, क्विकस्टार्ट सैंपल ऐप्लिकेशन में
CameraSourcePreview
औरGraphicOverlay
क्लास देखें. - अगर Camera2 API का इस्तेमाल किया जा रहा है, तो इमेज को
ImageFormat.YUV_420_888
फ़ॉर्मैट में कैप्चर करें. अगर पुराने Camera API का इस्तेमाल किया जा रहा है, तो इमेज कोImageFormat.NV21
फ़ॉर्मैट में कैप्चर करें.