Android için ML Kit ile konu segmentasyonu

Uygulamanıza konu segmentasyonu özellikleri eklemek için ML Kit'i kullanın.

Özellik Ayrıntılar
SDK adı play-services-mlkit-subject-segmentation
Uygulama Paketlenmemiş: Model, Google Play Hizmetleri kullanılarak dinamik olarak indirilir.
Uygulama boyutunun etkisi Boyut yaklaşık 200 KB artar.
Başlatma süresi Kullanıcıların, ilk kullanımdan önce modelin indirilmesini beklemesi gerekebilir.

Deneyin

Başlamadan önce

  1. Proje düzeyindeki build.gradle dosyanızda, Google'ın Maven deposunu hem buildscript hem de allprojects bölümlerinize eklediğinizden emin olun.
  2. ML Kit özne segmentasyonu kitaplığına ait bağımlılığı, modülünüzün uygulama düzeyindeki Gradle dosyasına ekleyin. Bu dosya genellikle app/build.gradle:
dependencies {
   implementation 'com.google.android.gms:play-services-mlkit-subject-segmentation:16.0.0-beta1'
}

Yukarıda belirtildiği gibi model, Google Play Hizmetleri tarafından sağlanır. Uygulamanız Play Store'dan yüklendikten sonra modeli cihaza otomatik olarak indirecek şekilde yapılandırabilirsiniz. Bunun için uygulamanızın AndroidManifest.xml dosyasına aşağıdaki beyanı ekleyin:

<application ...>
      ...
      <meta-data
          android:name="com.google.mlkit.vision.DEPENDENCIES"
          android:value="subject_segment" >
      <!-- To use multiple models: android:value="subject_segment,model2,model3" -->
</application>

Ayrıca ModuleInstallClient API ile modelin kullanılabilirliğini açıkça kontrol edebilir ve Google Play Hizmetleri üzerinden indirme isteğinde bulunabilirsiniz.

Yükleme sırasında model indirmelerini etkinleştirmezseniz veya açık indirme isteğinde bulunmazsanız model, segmentleyiciyi ilk kez çalıştırdığınızda indirilir. İndirme tamamlanmadan önce gönderdiğiniz istekler sonuç vermez.

1. Giriş resmini hazırlama

Bir resimde segmentasyon yapmak için cihazdaki bir Bitmap, media.Image, ByteBuffer, bayt dizisi veya dosyadan InputImage nesnesi oluşturun.

Farklı kaynaklardan InputImage nesnesi oluşturabilirsiniz. Bunların her biri aşağıda açıklanmıştır.

media.Image kullanma

Bir media.Image nesnesinden InputImage nesnesi oluşturmak için (ör. bir cihazın kamerasından resim çekerken) media.Image nesnesini ve resmin dönme açısını InputImage.fromMediaImage()'e iletin.

CameraX kitaplığını kullanıyorsanız OnImageCapturedListener ve ImageAnalysis.Analyzer sınıfları rotasyon değerini sizin için hesaplar.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Resmin dönme derecesini gösteren bir kamera kitaplığı kullanmıyorsanız bunu cihazın dönme derecesinden ve cihazdaki kamera sensörünün yöneliminden hesaplayabilirsiniz:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Ardından, media.Image nesnesini ve dönüş derecesi değerini InputImage.fromMediaImage()'e iletin:

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Dosya URI'si kullanma

Dosya URI'sinden InputImage nesnesi oluşturmak için uygulama bağlamını ve dosya URI'sini InputImage.fromFilePath()'a iletin. Bu, kullanıcıdan galeri uygulamasından bir resim seçmesini istemek için ACTION_GET_CONTENT intent'i kullandığınızda kullanışlıdır.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

ByteBuffer veya ByteArray kullanma

ByteBuffer veya ByteArray öğesinden InputImage nesnesi oluşturmak için önce media.Image girişi için daha önce açıklandığı gibi görüntünün döndürme derecesini hesaplayın. Ardından, resmin yüksekliği, genişliği, renk kodlama biçimi ve döndürme derecesiyle birlikte arabelleği veya diziyi kullanarak InputImage nesnesini oluşturun:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Bitmap kullanma

Bitmap nesnesinden InputImage nesnesi oluşturmak için aşağıdaki beyanı yapın:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Resim, döndürme dereceleriyle birlikte bir Bitmap nesnesi ile temsil edilir.

2. SubjectSegmenter örneği oluşturma

Segmentör seçeneklerini tanımlama

Resminizi segmentlere ayırmak için önce aşağıdaki gibi bir SubjectSegmenterOptions örneği oluşturun:

Kotlin

val options = SubjectSegmenterOptions.Builder()
       // enable options
       .build()

Java

SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder()
        // enable options
        .build();

Her bir seçeneğin ayrıntıları aşağıda verilmiştir:

Ön plan güvenilirlik maskesi

Ön plan güven maskesi, ön plandaki nesneyi arka plandan ayırt etmenizi sağlar.

Seçenekler bölümünde enableForegroundConfidenceMask() çağrısı, resmin işlenmesi sonrasında döndürülen SubjectSegmentationResult nesnesinde getForegroundMask() çağrısı yaparak daha sonra ön plan maskesini almanıza olanak tanır.

Kotlin

val options = SubjectSegmenterOptions.Builder()
        .enableForegroundConfidenceMask()
        .build()

Java

SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder()
        .enableForegroundConfidenceMask()
        .build();
Ön plan bit eşlemi

Benzer şekilde, ön plandaki öznenin bit eşlemesini de alabilirsiniz.

Seçeneklerde enableForegroundBitmap() çağrısı, resim işlendikten sonra döndürülen SubjectSegmentationResult nesnesinde getForegroundBitmap() çağrısı yaparak daha sonra ön plan bitmap'ini almanıza olanak tanır.

Kotlin

val options = SubjectSegmenterOptions.Builder()
        .enableForegroundBitmap()
        .build()

Java

SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder()
        .enableForegroundBitmap()
        .build();
Çok özneli güven maskesi

Ön plan seçeneklerinde olduğu gibi, her ön plan öznesi için güven maskesini etkinleştirmek üzere SubjectResultOptions simgesini aşağıdaki gibi kullanabilirsiniz:

Kotlin

val subjectResultOptions = SubjectSegmenterOptions.SubjectResultOptions.Builder()
    .enableConfidenceMask()
    .build()

val options = SubjectSegmenterOptions.Builder()
    .enableMultipleSubjects(subjectResultOptions)
    .build()

Java

SubjectResultOptions subjectResultOptions =
        new SubjectSegmenterOptions.SubjectResultOptions.Builder()
            .enableConfidenceMask()
            .build()

SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder()
      .enableMultipleSubjects(subjectResultOptions)
      .build()
Çok özneli bit eşlemi

Benzer şekilde, her konu için bit eşlemesini etkinleştirebilirsiniz:

Kotlin

val subjectResultOptions = SubjectSegmenterOptions.SubjectResultOptions.Builder()
    .enableSubjectBitmap()
    .build()

val options = SubjectSegmenterOptions.Builder()
    .enableMultipleSubjects(subjectResultOptions)
    .build()

Java

SubjectResultOptions subjectResultOptions =
      new SubjectSegmenterOptions.SubjectResultOptions.Builder()
        .enableSubjectBitmap()
        .build()

SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder()
      .enableMultipleSubjects(subjectResultOptions)
      .build()

Konu segmentleyiciyi oluşturma

SubjectSegmenterOptions seçeneklerini belirttikten sonra getClient()'yi çağıran ve seçenekleri parametre olarak ileten bir SubjectSegmenter örneği oluşturun:

Kotlin

val segmenter = SubjectSegmentation.getClient(options)

Java

SubjectSegmenter segmenter = SubjectSegmentation.getClient(options);

3. Resim işleme

Hazırlanan InputImage nesnesi, SubjectSegmenter nesnesinin process yöntemine iletilir:

Kotlin

segmenter.process(inputImage)
    .addOnSuccessListener { result ->
        // Task completed successfully
        // ...
    }
    .addOnFailureListener { e ->
        // Task failed with an exception
        // ...
    }

Java

segmenter.process(inputImage)
    .addOnSuccessListener(new OnSuccessListener() {
            @Override
            public void onSuccess(SubjectSegmentationResult result) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

4. Konu segmentasyonu sonucunu alma

Ön plan maskelerini ve bit eşlemelerini alma

İşleme tamamlandıktan sonra, resminizin ön plan maskesini almak için aşağıdaki gibi getForegroundConfidenceMask() çağrısı yapabilirsiniz:

Kotlin

val colors = IntArray(image.width * image.height)

val foregroundMask = result.foregroundConfidenceMask
for (i in 0 until image.width * image.height) {
  if (foregroundMask[i] > 0.5f) {
    colors[i] = Color.argb(128, 255, 0, 255)
  }
}

val bitmapMask = Bitmap.createBitmap(
  colors, image.width, image.height, Bitmap.Config.ARGB_8888
)

Java

int[] colors = new int[image.getWidth() * image.getHeight()];

FloatBuffer foregroundMask = result.getForegroundConfidenceMask();
for (int i = 0; i < image.getWidth() * image.getHeight(); i++) {
  if (foregroundMask.get() > 0.5f) {
    colors[i] = Color.argb(128, 255, 0, 255);
  }
}

Bitmap bitmapMask = Bitmap.createBitmap(
      colors, image.getWidth(), image.getHeight(), Bitmap.Config.ARGB_8888
);

Ayrıca, getForegroundBitmap() çağrısı yaparak resmin ön planının bit haritasını da alabilirsiniz:

Kotlin

val foregroundBitmap = result.foregroundBitmap

Java

Bitmap foregroundBitmap = result.getForegroundBitmap();

Her özne için maskeleri ve bit eşlemleri alma

Benzer şekilde, her bir özne üzerinde getConfidenceMask()'yi aşağıdaki gibi çağırarak segmentlere ayrılmış öznelerin maskesini alabilirsiniz:

Kotlin

val subjects = result.subjects

val colors = IntArray(image.width * image.height)
for (subject in subjects) {
  val mask = subject.confidenceMask
  for (i in 0 until subject.width * subject.height) {
    val confidence = mask[i]
    if (confidence > 0.5f) {
      colors[image.width * (subject.startY - 1) + subject.startX] =
          Color.argb(128, 255, 0, 255)
    }
  }
}

val bitmapMask = Bitmap.createBitmap(
  colors, image.width, image.height, Bitmap.Config.ARGB_8888
)

Java

List subjects = result.getSubjects();

int[] colors = new int[image.getWidth() * image.getHeight()];
for (Subject subject : subjects) {
  FloatBuffer mask = subject.getConfidenceMask();
  for (int i = 0; i < subject.getWidth() * subject.getHeight(); i++) {
    float confidence = mask.get();
    if (confidence > 0.5f) {
      colors[width * (subject.getStartY() - 1) + subject.getStartX()]
          = Color.argb(128, 255, 0, 255);
    }
  }
}

Bitmap bitmapMask = Bitmap.createBitmap(
  colors, image.width, image.height, Bitmap.Config.ARGB_8888
);

Her segmente ayrılmış öznenin bit eşlemesine aşağıdaki şekilde de erişebilirsiniz:

Kotlin

val bitmaps = mutableListOf()
for (subject in subjects) {
  bitmaps.add(subject.bitmap)
}

Java

List bitmaps = new ArrayList<>();
for (Subject subject : subjects) {
  bitmaps.add(subject.getBitmap());
}

Performansı iyileştirmeye yönelik ipuçları

Her uygulama oturumunda, modelin başlatılması nedeniyle ilk çıkarım genellikle sonraki çıkarımlardan daha yavaştır. Düşük gecikme kritik öneme sahipse önceden "sahte" bir çıkarım çağırabilirsiniz.

Sonuçlarınızın kalitesi, giriş resminin kalitesine bağlıdır:

  • ML Kit'in doğru bir segmentasyon sonucu elde edebilmesi için resmin en az 512x512 piksel olması gerekir.
  • Resmin odaklanmaması da doğruluğu etkileyebilir. Kabul edilebilir sonuçlar alamazsanız kullanıcıdan resmi yeniden çekmesini isteyin.