Android için ML Kit ile konu segmentasyonu

Uygulamanıza kolayca konu segmentasyon özellikleri eklemek için ML Kit'i kullanın.

Özellik Ayrıntılar
SDK adı play-services-mlkit-subject-segmentation
Uygulama Gruplandırılmamış: Model, Google Play Hizmetleri kullanılarak dinamik olarak indirilir.
Uygulama boyutu etkisi Yaklaşık 200 KB boyut artışı.
Başlatma süresi Kullanıcıların ilk kullanımdan önce modelin indirilmesini beklemesi gerekebilir.

Deneyin

Başlamadan önce

  1. Proje düzeyindeki build.gradle dosyanıza, hem buildscript hem de allprojects bölümlerinize Google'ın Maven deposunu eklediğinizden emin olun.
  2. ML Kit konu segmentasyon kitaplığı için bağımlılığı, modülünüzün uygulama düzeyindeki gradle dosyasına ekleyin. Bu dosya genellikle app/build.gradle olmalıdır:
dependencies {
   implementation 'com.google.android.gms:play-services-mlkit-subject-segmentation:16.0.0-beta1'
}

Yukarıda belirtildiği gibi, bu model Google Play Hizmetleri tarafından sağlanmaktadır. Uygulamanızı, modeli cihaza otomatik olarak indirecek şekilde yapılandırabilirsiniz. uygulamanız Play Store'dan yüklendikten sonra. Bunu yapmak için aşağıdakini ekleyin: beyanını uygulamanızın AndroidManifest.xml dosyasına ekleyin:

<application ...>
      ...
      <meta-data
          android:name="com.google.mlkit.vision.DEPENDENCIES"
          android:value="subject_segment" >
      <!-- To use multiple models: android:value="subject_segment,model2,model3" -->
</application>

Ayrıca, ModuleLoadClient API'yi kullanarak model kullanılabilirliğini açıkça kontrol edebilir ve Google Play Hizmetleri üzerinden indirme isteğinde bulunabilirsiniz.

Yükleme zamanı modelinin indirilmesini etkinleştirmezseniz veya açıkça indirme isteğinde bulunmazsanız Model, segmentleyiciyi ilk çalıştırdığınızda indirilir. Yaptığınız istekler hiçbir sonuç döndürmez.

1. Giriş resmini hazırlama

Bir görüntüde segmentasyon gerçekleştirmek için InputImage nesnesi oluşturun bir Bitmap, media.Image, ByteBuffer, bayt dizisi veya için geçerlidir.

InputImage oluşturabilirsiniz her biri aşağıda açıklanmıştır.

media.Image kullanarak

InputImage oluşturmak için media.Image nesnesinden bir nesneden (örneğin, cihazın kamerasını, media.Image nesnesini ve resmin döndürme değeri InputImage.fromMediaImage() değerine ayarlanır.

URL'yi CameraX kitaplığı, OnImageCapturedListener ve ImageAnalysis.Analyzer sınıfları rotasyon değerini hesaplar sizin için.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Resmin dönme derecesini sağlayan bir kamera kitaplığı kullanmıyorsanız cihazın dönüş derecesinden ve kameranın yönünden hesaplayabilir cihazdaki sensör:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Ardından, media.Image nesnesini ve döndürme derecesi değerini InputImage.fromMediaImage() değerine ayarlayın:

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Dosya URI'si kullanarak

InputImage oluşturmak için uygulama bağlamını ve dosya URI'sini InputImage.fromFilePath(). Bu özellik, kullanıcıdan seçim yapmasını istemek için bir ACTION_GET_CONTENT niyeti kullanın galeri uygulamasından bir resim.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

ByteBuffer veya ByteArray kullanarak

InputImage oluşturmak için bir ByteBuffer veya ByteArray nesnesinden alıp almayacaksanız önce resmi hesaplayın media.Image girişi için daha önce açıklandığı gibi dönme derecesi. Ardından, arabellek veya diziyle InputImage nesnesini, bu resmin yükseklik, genişlik, renk kodlama biçimi ve döndürme derecesi:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Bitmap kullanarak

InputImage oluşturmak için Bitmap nesnesindeki şu bildirimi yapın:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Resim, döndürme dereceleriyle birlikte bir Bitmap nesnesiyle temsil edilir.

2. SubjectSegmenter örneği oluşturma

Segmenter seçeneklerini tanımlama

Resminizi segmentlere ayırmak için önce SubjectSegmenterOptions öğesinin bir örneğini izleyin:

Kotlin

val options = SubjectSegmenterOptions.Builder()
       // enable options
       .build()

Java

SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder()
        // enable options
        .build();

Aşağıda her seçeneğin ayrıntılarını görebilirsiniz:

Ön plan güven maskesi

Ön plan güven maskesi, ön plandaki özneyi görebilirsiniz.

Seçeneklerden enableForegroundConfidenceMask() adlı kişiyi daha sonra çağırın getForegroundMask() numaralı telefonu çağırarak ön plan maskesini Resim işlendikten sonra SubjectSegmentationResult nesnesi döndürüldü.

Kotlin

val options = SubjectSegmenterOptions.Builder()
        .enableForegroundConfidenceMask()
        .build()

Java

SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder()
        .enableForegroundConfidenceMask()
        .build();
Ön plan bit eşlemi

Benzer şekilde, ön plandaki öznenin bit eşlemini de alabilirsiniz.

Seçeneklerden enableForegroundBitmap() adlı kişiyi daha sonra geri almanıza olanak tanır getForegroundBitmap() öğesini çağırarak ön plan bit eşlemini Resim işlendikten sonra SubjectSegmentationResult nesnesi döndürüldü.

Kotlin

val options = SubjectSegmenterOptions.Builder()
        .enableForegroundBitmap()
        .build()

Java

SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder()
        .enableForegroundBitmap()
        .build();
Çok konulu güven maskesi

Ön plan seçeneklerinde olduğu gibi, SubjectResultOptions kullanarak ön plan seçeneklerini aşağıdaki gibi her ön plan öznesi için güven maskesi belirleyin:

Kotlin

val subjectResultOptions = SubjectSegmenterOptions.SubjectResultOptions.Builder()
    .enableConfidenceMask()
    .build()

val options = SubjectSegmenterOptions.Builder()
    .enableMultipleSubjects(subjectResultOptions)
    .build()

Java

SubjectResultOptions subjectResultOptions =
        new SubjectSegmenterOptions.SubjectResultOptions.Builder()
            .enableConfidenceMask()
            .build()

SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder()
      .enableMultipleSubjects(subjectResultOptions)
      .build()
Çok konulu bit eşlem

Benzer şekilde, her bir konu için bit eşlemi etkinleştirebilirsiniz:

Kotlin

val subjectResultOptions = SubjectSegmenterOptions.SubjectResultOptions.Builder()
    .enableSubjectBitmap()
    .build()

val options = SubjectSegmenterOptions.Builder()
    .enableMultipleSubjects(subjectResultOptions)
    .build()

Java

SubjectResultOptions subjectResultOptions =
      new SubjectSegmenterOptions.SubjectResultOptions.Builder()
        .enableSubjectBitmap()
        .build()

SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder()
      .enableMultipleSubjects(subjectResultOptions)
      .build()

Konu segmentleyicisi oluşturma

SubjectSegmenterOptions seçeneklerini belirledikten sonra, yeni bir SubjectSegmenter örneğe çağrı getClient() ve seçenekleri parametresi:

Kotlin

val segmenter = SubjectSegmentation.getClient(options)

Java

SubjectSegmenter segmenter = SubjectSegmentation.getClient(options);

3. Görüntü işleme

Hazırlanan InputImage adımı geçin nesnesini tanımlayın:SubjectSegmenterprocess

Kotlin

segmenter.process(inputImage)
    .addOnSuccessListener { result ->
        // Task completed successfully
        // ...
    }
    .addOnFailureListener { e ->
        // Task failed with an exception
        // ...
    }

Java

segmenter.process(inputImage)
    .addOnSuccessListener(new OnSuccessListener() {
            @Override
            public void onSuccess(SubjectSegmentationResult result) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

4. Konu segmentasyonu sonucunu alma

Ön plan maskelerini ve bit eşlemlerini alma

İşlendikten sonra, resim çağrınız için ön plan maskesini alabilirsiniz getForegroundConfidenceMask() gibi:

Kotlin

val colors = IntArray(image.width * image.height)

val foregroundMask = result.foregroundConfidenceMask
for (i in 0 until image.width * image.height) {
  if (foregroundMask[i] > 0.5f) {
    colors[i] = Color.argb(128, 255, 0, 255)
  }
}

val bitmapMask = Bitmap.createBitmap(
  colors, image.width, image.height, Bitmap.Config.ARGB_8888
)

Java

int[] colors = new int[image.getWidth() * image.getHeight()];

FloatBuffer foregroundMask = result.getForegroundConfidenceMask();
for (int i = 0; i < image.getWidth() * image.getHeight(); i++) {
  if (foregroundMask.get() > 0.5f) {
    colors[i] = Color.argb(128, 255, 0, 255);
  }
}

Bitmap bitmapMask = Bitmap.createBitmap(
      colors, image.getWidth(), image.getHeight(), Bitmap.Config.ARGB_8888
);

getForegroundBitmap() öğesini çağıran resmin ön planından da bit eşlem alabilirsiniz:

Kotlin

val foregroundBitmap = result.foregroundBitmap

Java

Bitmap foregroundBitmap = result.getForegroundBitmap();

Her konu için maskeleri ve bit eşlemleri alın

Benzer şekilde, şunu çağırarak bölümlendirilmiş konulara ilişkin maskeyi alabilirsiniz: Her konu için aşağıdaki gibi getConfidenceMask():

Kotlin

val subjects = result.subjects

val colors = IntArray(image.width * image.height)
for (subject in subjects) {
  val mask = subject.confidenceMask
  for (i in 0 until subject.width * subject.height) {
    val confidence = mask[i]
    if (confidence > 0.5f) {
      colors[image.width * (subject.startY - 1) + subject.startX] =
          Color.argb(128, 255, 0, 255)
    }
  }
}

val bitmapMask = Bitmap.createBitmap(
  colors, image.width, image.height, Bitmap.Config.ARGB_8888
)

Java

List subjects = result.getSubjects();

int[] colors = new int[image.getWidth() * image.getHeight()];
for (Subject subject : subjects) {
  FloatBuffer mask = subject.getConfidenceMask();
  for (int i = 0; i < subject.getWidth() * subject.getHeight(); i++) {
    float confidence = mask.get();
    if (confidence > 0.5f) {
      colors[width * (subject.getStartY() - 1) + subject.getStartX()]
          = Color.argb(128, 255, 0, 255);
    }
  }
}

Bitmap bitmapMask = Bitmap.createBitmap(
  colors, image.width, image.height, Bitmap.Config.ARGB_8888
);

Bölümlere ayrılmış her konunun bit eşlemine aşağıdaki şekilde de erişebilirsiniz:

Kotlin

val bitmaps = mutableListOf()
for (subject in subjects) {
  bitmaps.add(subject.bitmap)
}

Java

List bitmaps = new ArrayList<>();
for (Subject subject : subjects) {
  bitmaps.add(subject.getBitmap());
}

Performansı artırmaya yönelik ipuçları

Her uygulama oturumu için ilk çıkarım genellikle sonrakine göre daha yavaştır çıkarımları da içerir. Düşük gecikme önemliyse "sahte" olarak adlandırmak önceden çıkarmaya çalışın.

Sonuçlarınızın kalitesi, giriş resminin kalitesine bağlıdır:

  • Makine Öğrenimi Kiti'nin doğru bir segmentasyon sonucu alabilmesi için görüntünün en az 512x512 piksel boyutunda olması gerekir.
  • Kötü bir resim odağı, doğruluğu da etkileyebilir. Kabul edilebilir sonuçlar almıyorsanız kullanıcıdan resmi yeniden çekmesini isteyin.