使用適用於 Android 的 ML Kit 區隔主題區隔

使用 ML Kit,輕鬆在應用程式中加入主體區隔功能。

功能 詳細資料
SDK 名稱 play-services-mlkit-subject-segmentation
導入作業 未封裝:模型是使用 Google Play 服務動態下載。
應用程式大小影響 大小增加約 200 KB。
初始化時間 使用者可能要等待模型下載完畢,再開始使用該模型。

立即試用

事前準備

  1. 在專案層級的 build.gradle 檔案中,請務必在 buildscriptallprojects 區段中納入 Google 的 Maven 存放區。
  2. 將 ML Kit 主體區隔程式庫的依附元件新增至模組的應用程式層級 Gradle 檔案,通常為 app/build.gradle
dependencies {
   implementation 'com.google.android.gms:play-services-mlkit-subject-segmentation:16.0.0-beta1'
}

如上所述,模型是由 Google Play 服務提供。 您可以設定應用程式,自動將模型下載到裝置 使用者從 Play 商店安裝應用程式後若要執行此操作,請新增下列程式碼 新增至應用程式的 AndroidManifest.xml 檔案:

<application ...>
      ...
      <meta-data
          android:name="com.google.mlkit.vision.DEPENDENCIES"
          android:value="subject_segment" >
      <!-- To use multiple models: android:value="subject_segment,model2,model3" -->
</application>

您也可以透過 ModuleInstallClient API 明確檢查型號是否可用,並要求透過 Google Play 服務下載。

未啟用安裝期間模型下載功能或要求明確下載 模型會在您初次執行區隔器時下載您提出的要求 就無法取得任何結果。

1. 準備輸入圖片

如要對圖片執行區隔,請建立 InputImage 物件 從 Bitmapmedia.ImageByteBuffer、位元組陣列或 裝置。

您可以建立InputImage 不同來源的 ANR 物件,說明如下。

使用 media.Image

如要建立InputImage 物件,例如從 media.Image 物件擷取圖片 裝置的相機,請傳遞 media.Image 物件和映像檔的 旋轉為 InputImage.fromMediaImage()

如果您使用 CameraX 程式庫、OnImageCapturedListenerImageAnalysis.Analyzer 類別會計算旋轉值 不必確保憑證管理是否適當 因為 Google Cloud 會為您管理安全性

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

如果您沒有使用相機程式庫提供圖片的旋轉角度, 可根據裝置的旋轉角度和相機方向來計算 感應器:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

然後,請傳遞 media.Image 物件和 將度數值旋轉為 InputImage.fromMediaImage()

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

使用檔案 URI

如要建立InputImage 物件,將應用程式結構定義與檔案 URI 傳遞至 InputImage.fromFilePath()。如果您要 使用 ACTION_GET_CONTENT 意圖提示使用者選取 取自圖片庫應用程式中的圖片。

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

使用 ByteBufferByteArray

如要建立InputImage ByteBufferByteArray 的物件,請先計算圖片 與先前 media.Image 輸入中所述的旋轉角度相同。 接著,使用緩衝區或陣列建立 InputImage 物件,以及 高度、寬度、顏色編碼格式以及旋轉角度:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

使用 Bitmap

如要建立InputImage 物件中,Bitmap 物件,請做出以下宣告:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

圖像以 Bitmap 物件和旋轉角度表示。

2. 建立 SubjectSegmenter 例項

定義區隔選項

如要區隔圖片,請先建立 SubjectSegmenterOptions 的執行個體,做為 追蹤:

Kotlin

val options = SubjectSegmenterOptions.Builder()
       // enable options
       .build()

Java

SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder()
        // enable options
        .build();

每個選項的詳細資訊如下:

前景可信度遮罩

前景可信度遮罩可區分前景主體和 背景工作。

呼叫選項中的 enableForegroundConfidenceMask() 以便稍後擷取 前景遮罩,方法是呼叫 getForegroundMask(), 處理圖片後傳回 SubjectSegmentationResult 物件。

Kotlin

val options = SubjectSegmenterOptions.Builder()
        .enableForegroundConfidenceMask()
        .build()

Java

SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder()
        .enableForegroundConfidenceMask()
        .build();
前景點陣圖

同樣地,您也可以取得前景主題的點陣圖。

呼叫選項中的 enableForegroundBitmap() 以便稍後擷取 在前景點陣圖上呼叫 getForegroundBitmap() 處理圖片後傳回 SubjectSegmentationResult 物件。

Kotlin

val options = SubjectSegmenterOptions.Builder()
        .enableForegroundBitmap()
        .build()

Java

SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder()
        .enableForegroundBitmap()
        .build();
多重主體的可信度遮罩

如同前景選項,您可以使用 SubjectResultOptions 啟用 每個前景主體的可信度遮罩如下:

Kotlin

val subjectResultOptions = SubjectSegmenterOptions.SubjectResultOptions.Builder()
    .enableConfidenceMask()
    .build()

val options = SubjectSegmenterOptions.Builder()
    .enableMultipleSubjects(subjectResultOptions)
    .build()

Java

SubjectResultOptions subjectResultOptions =
        new SubjectSegmenterOptions.SubjectResultOptions.Builder()
            .enableConfidenceMask()
            .build()

SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder()
      .enableMultipleSubjects(subjectResultOptions)
      .build()
多主體點陣圖

同樣地,您也可以為每個主題啟用點陣圖:

Kotlin

val subjectResultOptions = SubjectSegmenterOptions.SubjectResultOptions.Builder()
    .enableSubjectBitmap()
    .build()

val options = SubjectSegmenterOptions.Builder()
    .enableMultipleSubjects(subjectResultOptions)
    .build()

Java

SubjectResultOptions subjectResultOptions =
      new SubjectSegmenterOptions.SubjectResultOptions.Builder()
        .enableSubjectBitmap()
        .build()

SubjectSegmenterOptions options = new SubjectSegmenterOptions.Builder()
      .enableMultipleSubjects(subjectResultOptions)
      .build()

建立主題片段

指定 SubjectSegmenterOptions 選項後,請建立 SubjectSegmenter 執行個體呼叫 getClient(),並將選項做為 參數:

Kotlin

val segmenter = SubjectSegmentation.getClient(options)

Java

SubjectSegmenter segmenter = SubjectSegmentation.getClient(options);

3. 處理圖片

傳遞事先準備的 InputImage 新增至 SubjectSegmenterprocess 方法:

Kotlin

segmenter.process(inputImage)
    .addOnSuccessListener { result ->
        // Task completed successfully
        // ...
    }
    .addOnFailureListener { e ->
        // Task failed with an exception
        // ...
    }

Java

segmenter.process(inputImage)
    .addOnSuccessListener(new OnSuccessListener() {
            @Override
            public void onSuccess(SubjectSegmentationResult result) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

4. 取得主體區隔結果

擷取前景遮罩和點陣圖

處理完畢後,您可以擷取圖片呼叫的前景遮罩 getForegroundConfidenceMask(),如下所示:

Kotlin

val colors = IntArray(image.width * image.height)

val foregroundMask = result.foregroundConfidenceMask
for (i in 0 until image.width * image.height) {
  if (foregroundMask[i] > 0.5f) {
    colors[i] = Color.argb(128, 255, 0, 255)
  }
}

val bitmapMask = Bitmap.createBitmap(
  colors, image.width, image.height, Bitmap.Config.ARGB_8888
)

Java

int[] colors = new int[image.getWidth() * image.getHeight()];

FloatBuffer foregroundMask = result.getForegroundConfidenceMask();
for (int i = 0; i < image.getWidth() * image.getHeight(); i++) {
  if (foregroundMask.get() > 0.5f) {
    colors[i] = Color.argb(128, 255, 0, 255);
  }
}

Bitmap bitmapMask = Bitmap.createBitmap(
      colors, image.getWidth(), image.getHeight(), Bitmap.Config.ARGB_8888
);

您也可以透過呼叫 getForegroundBitmap() 擷取圖片前景的點陣圖:

Kotlin

val foregroundBitmap = result.foregroundBitmap

Java

Bitmap foregroundBitmap = result.getForegroundBitmap();

擷取每個主題的遮罩和點陣圖

同樣地,您也可以呼叫 每個主旨的getConfidenceMask(),如下所示:

Kotlin

val subjects = result.subjects

val colors = IntArray(image.width * image.height)
for (subject in subjects) {
  val mask = subject.confidenceMask
  for (i in 0 until subject.width * subject.height) {
    val confidence = mask[i]
    if (confidence > 0.5f) {
      colors[image.width * (subject.startY - 1) + subject.startX] =
          Color.argb(128, 255, 0, 255)
    }
  }
}

val bitmapMask = Bitmap.createBitmap(
  colors, image.width, image.height, Bitmap.Config.ARGB_8888
)

Java

List subjects = result.getSubjects();

int[] colors = new int[image.getWidth() * image.getHeight()];
for (Subject subject : subjects) {
  FloatBuffer mask = subject.getConfidenceMask();
  for (int i = 0; i < subject.getWidth() * subject.getHeight(); i++) {
    float confidence = mask.get();
    if (confidence > 0.5f) {
      colors[width * (subject.getStartY() - 1) + subject.getStartX()]
          = Color.argb(128, 255, 0, 255);
    }
  }
}

Bitmap bitmapMask = Bitmap.createBitmap(
  colors, image.width, image.height, Bitmap.Config.ARGB_8888
);

您也可以按照下列步驟存取每個區隔主題的點陣圖:

Kotlin

val bitmaps = mutableListOf()
for (subject in subjects) {
  bitmaps.add(subject.bitmap)
}

Java

List bitmaps = new ArrayList<>();
for (Subject subject : subjects) {
  bitmaps.add(subject.getBitmap());
}

提升成效的訣竅

在每個應用程式工作階段,第一次推論的速度通常都比後續程序慢 推論過程如果延遲時間極短,請考慮 呼叫「虛擬」推論 Pod

結果的品質取決於輸入圖片的品質:

  • 為了讓 ML Kit 取得準確的區隔結果,圖片至少應為 512 x 512 像素。
  • 圖像對焦品質不佳也可能會影響準確度。如果您未能取得可接受的結果,請要求使用者重新拍攝圖片。