Mengenali teks dalam gambar dengan ML Kit di Android

Anda dapat menggunakan ML Kit untuk mengenali teks dalam gambar atau video, seperti teks rambu jalan. Karakteristik utama fitur ini adalah:

API Pengenalan Teks
DeskripsiMengenali teks skrip Latin dalam gambar atau video.
Nama perpustakaancom.google.android.gms:play-services-mlkit-text-recognition
ImplementasiLibrary didownload secara dinamis melalui Layanan Google Play.
Dampak ukuran aplikasi260KB
Waktu inisialisasiMungkin harus menunggu library didownload sebelum penggunaan pertama.
PerformaReal-time di sebagian besar perangkat.

API pengenalan teks menggunakan library tidak terpaket yang harus didownload. Anda memiliki opsi untuk melakukan download ini saat aplikasi diinstal, atau saat pertama kali diluncurkan, atau melalui layanan ModuleInstallClient API layanan Google Play. Dalam banyak kasus, aplikasi Android lain mungkin telah melakukan langkah ini, dalam hal ini API langsung tersedia.

Sebelum memulai

  1. Dalam file build.gradle level project, pastikan Anda memasukkan repositori Maven Google di bagian buildscript dan allprojects.
  2. Tambahkan dependensi untuk library Android ML Kit ke file gradle level aplikasi modul Anda, biasanya app/build.gradle:
    dependencies {
      // ...
    
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition:18.0.2'
    }
    
  3. Opsional tetapi direkomendasikan: Anda dapat mengonfigurasi aplikasi untuk mendownload model ML secara otomatis ke perangkat setelah aplikasi diinstal dari Play Store. Untuk melakukannya, tambahkan deklarasi berikut ke file AndroidManifest.xml aplikasi Anda:

    <application ...>
      ...
      <meta-data
          android:name="com.google.mlkit.vision.DEPENDENCIES"
          android:value="ocr" />
      <!-- To use multiple models: android:value="ocr,model2,model3" -->
    </application>
    
    Jika Anda tidak mengaktifkan download model waktu-instal, model ini akan didownload saat pertama kali Anda menjalankan detektor di perangkat. Permintaan yang Anda buat sebelum download selesai tidak akan menghasilkan apa pun.

1. Membuat instance TextRecognizer

Buat instance TextRecognizer:

Kotlin

val recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS)

Java

TextRecognizer recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS);

2. Menyiapkan gambar input

Untuk mengenali teks dalam gambar, buat objek InputImage dari Bitmap, media.Image, ByteBuffer, array byte, atau file di perangkat. Kemudian, teruskan objek InputImage ke metode processImage TextRecognizer.

Anda dapat membuat objek InputImage dari sumber yang berbeda, masing-masing dijelaskan di bawah.

Menggunakan media.Image

Untuk membuat objek InputImage dari objek media.Image, seperti saat mengambil gambar dari kamera perangkat, teruskan objek media.Image dan rotasi gambar ke InputImage.fromMediaImage().

Jika Anda menggunakan library CameraX, class OnImageCapturedListener dan ImageAnalysis.Analyzer menghitung nilai rotasi untuk Anda.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Jika tidak menggunakan library kamera yang memberi Anda derajat rotasi gambar, Anda dapat menghitungnya dari derajat rotasi perangkat dan orientasi sensor kamera di perangkat:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Kemudian, teruskan objek media.Image dan nilai derajat rotasi ke InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Menggunakan URI file

Untuk membuat objek InputImage dari URI file, teruskan konteks aplikasi dan URI file ke InputImage.fromFilePath(). Hal ini berguna saat Anda menggunakan intent ACTION_GET_CONTENT untuk meminta pengguna memilih gambar dari aplikasi galeri mereka.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Menggunakan ByteBuffer atau ByteArray

Untuk membuat objek InputImage dari ByteBuffer atau ByteArray, pertama-tama hitung derajat rotasi gambar seperti yang dijelaskan sebelumnya untuk input media.Image. Kemudian, buat objek InputImage dengan buffering atau array, beserta tinggi, lebar, format encoding warna, dan derajat rotasi gambar.

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Menggunakan Bitmap

Untuk membuat objek InputImage dari objek Bitmap, buat deklarasi berikut:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Gambar direpresentasikan oleh objek Bitmap bersama dengan derajat rotasi.

3. Memproses gambar

Teruskan gambar ke metode process:

Kotlin

val result = recognizer.process(image)
        .addOnSuccessListener { visionText ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

Task<Text> result =
        recognizer.process(image)
                .addOnSuccessListener(new OnSuccessListener<Text>() {
                    @Override
                    public void onSuccess(Text visionText) {
                        // Task completed successfully
                        // ...
                    }
                })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

4. Ekstrak teks dari blok teks yang dikenali

Jika operasi pengenalan teks berhasil, objek Text akan diteruskan ke pemroses peristiwa sukses. Objek Text berisi teks lengkap yang dikenali dalam gambar, serta berisi nol objek TextBlock atau lebih.

Setiap TextBlock mewakili blok teks persegi panjang yang berisi nol objek Line atau lebih. Setiap objek Line mewakili baris teks, yang berisi nol objek Element atau lebih. Setiap objek Element mewakili kata atau entitas seperti kata, yang berisi nol objek Symbol atau lebih. Setiap objek Symbol mewakili karakter, digit, atau entitas seperti kata.

Untuk setiap objek TextBlock, Line, Element, dan Symbol, Anda bisa mendapatkan teks yang dikenali di area, koordinat pembatas area tersebut, dan banyak atribut lainnya seperti informasi rotasi, skor keyakinan dll.

Contoh:

Kotlin

val resultText = result.text
for (block in result.textBlocks) {
    val blockText = block.text
    val blockCornerPoints = block.cornerPoints
    val blockFrame = block.boundingBox
    for (line in block.lines) {
        val lineText = line.text
        val lineCornerPoints = line.cornerPoints
        val lineFrame = line.boundingBox
        for (element in line.elements) {
            val elementText = element.text
            val elementCornerPoints = element.cornerPoints
            val elementFrame = element.boundingBox
        }
    }
}

Java

String resultText = result.getText();
for (Text.TextBlock block : result.getTextBlocks()) {
    String blockText = block.getText();
    Point[] blockCornerPoints = block.getCornerPoints();
    Rect blockFrame = block.getBoundingBox();
    for (Text.Line line : block.getLines()) {
        String lineText = line.getText();
        Point[] lineCornerPoints = line.getCornerPoints();
        Rect lineFrame = line.getBoundingBox();
        for (Text.Element element : line.getElements()) {
            String elementText = element.getText();
            Point[] elementCornerPoints = element.getCornerPoints();
            Rect elementFrame = element.getBoundingBox();
            for (Text.Symbol symbol : element.getSymbols()) {
                String symbolText = symbol.getText();
                Point[] symbolCornerPoints = symbol.getCornerPoints();
                Rect symbolFrame = symbol.getBoundingBox();
            }
        }
    }
}

Pedoman gambar input

  • Agar ML Kit dapat secara akurat mengenali teks, gambar input harus berisi teks yang direpresentasikan oleh data piksel yang memadai. Idealnya, setiap karakter harus berukuran minimal 16x16 piksel. Umumnya, tidak ada manfaat akurasi bagi karakter yang lebih besar dari 24x24 piksel.

    Jadi, misalnya, gambar 640x480 piksel mungkin sudah cukup untuk memindai kartu nama yang menempati lebar penuh gambar. Untuk memindai dokumen yang dicetak pada kertas berukuran letter, gambar 720x1280 piksel mungkin diperlukan.

  • Fokus gambar yang buruk dapat memengaruhi akurasi pengenalan teks. Jika Anda tidak mendapatkan hasil yang diterima, coba minta pengguna untuk mengambil ulang gambar.

  • Jika mengenali teks dalam aplikasi real-time, Anda harus mempertimbangkan dimensi keseluruhan gambar input. Gambar yang lebih kecil dapat diproses lebih cepat. Untuk mengurangi latensi, pastikan teks menempati gambar seluas mungkin, dan ambil gambar dengan resolusi lebih rendah (ingat persyaratan akurasi yang disebutkan di atas). Untuk informasi selengkapnya, lihat Tips untuk meningkatkan performa.

Tips untuk meningkatkan performa

  • Jika Anda menggunakan API Camera atau camera2, throttle panggilan ke detektor. Jika frame video baru tersedia saat detektor sedang berjalan, hapus frame tersebut. Lihat class VisionProcessorBase di aplikasi contoh panduan memulai untuk mengetahui contohnya.
  • Jika Anda menggunakan CameraX API, pastikan strategi backpressure ditetapkan ke nilai defaultnya ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. Hal ini menjamin hanya satu gambar yang akan dikirim untuk analisis dalam satu waktu. Jika ada lebih banyak gambar yang dihasilkan saat analyzer sibuk, gambar tersebut akan dihapus secara otomatis dan tidak diantrekan untuk pengiriman. Setelah gambar yang dianalisis ditutup dengan memanggil ImageProxy.close(), gambar terbaru berikutnya akan dikirimkan.
  • Jika menggunakan output detektor untuk menempatkan grafis pada gambar input, pertama-tama dapatkan hasil dari ML Kit, lalu render gambar dan tempatkan grafis dalam satu langkah. Proses ini dirender ke permukaan tampilan hanya sekali untuk setiap frame input. Lihat class CameraSourcePreview dan GraphicOverlay di aplikasi contoh panduan memulai untuk mengetahui contohnya.
  • Jika menggunakan Camera2 API, ambil gambar dalam format ImageFormat.YUV_420_888. Jika menggunakan Camera API versi lama, ambil gambar dalam format ImageFormat.NV21.
  • Pertimbangkan untuk mengambil foto dengan resolusi lebih rendah. Namun, perhatikan juga persyaratan dimensi gambar API ini.