ML Kit を使用すると、画像や動画内のテキスト(たとえば、 あります。この機能の主な特徴は次のとおりです。
機能 | バンドルされていません | バンドル |
---|---|---|
ライブラリ名 | com.google.android.gms:play-services-mlkit-text-recognition
com.google.android.gms:play-services-mlkit-text-recognition-chinese com.google.android.gms:play-services-mlkit-text-recognition-devanagari com.google.android.gms:play-services-mlkit-text-recognition-japanese com.google.android.gms:play-services-mlkit-text-recognition-korean |
com.google.mlkit:text-recognition com.google.mlkit:text-recognition-chinese com.google.mlkit:text-recognition-devanagari com.google.mlkit:text-recognition-japanese com.google.mlkit:text-recognition-korean |
実装 | モデルは Google Play 開発者サービス経由で動的にダウンロードされます。 | モデルはビルド時にアプリに静的にリンクされます。 |
アプリのサイズ | スクリプト アーキテクチャごとに約 260 KB のサイズ増加。 | アーキテクチャごとにスクリプトあたり約 4 MB サイズが増加します。 |
初期化時間 | 初めて使用するには、モデルがダウンロードされるのを待たなければならない場合があります。 | モデルはすぐに利用できます。 |
パフォーマンス | ラテン文字のスクリプト ライブラリはほとんどのデバイスでリアルタイム、その他のデバイスでは遅くなります。 | ラテン文字ライブラリの場合はほとんどのデバイスでリアルタイムですが、それ以外の場合は遅くなります。 |
試してみる
始める前に
- プロジェクト レベルの
build.gradle
ファイルで、buildscript
セクションとallprojects
セクションの両方に Google の Maven リポジトリを組み込みます。 ML Kit Android ライブラリの依存関係をモジュールのアプリレベルの Gradle ファイル(通常は
app/build.gradle
)に追加します。モデルをアプリにバンドルする場合:
dependencies { // To recognize Latin script implementation 'com.google.mlkit:text-recognition:16.0.1' // To recognize Chinese script implementation 'com.google.mlkit:text-recognition-chinese:16.0.1' // To recognize Devanagari script implementation 'com.google.mlkit:text-recognition-devanagari:16.0.1' // To recognize Japanese script implementation 'com.google.mlkit:text-recognition-japanese:16.0.1' // To recognize Korean script implementation 'com.google.mlkit:text-recognition-korean:16.0.1' }
Google Play 開発者サービスでモデルを使用する場合:
dependencies { // To recognize Latin script implementation 'com.google.android.gms:play-services-mlkit-text-recognition:19.0.1' // To recognize Chinese script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-chinese:16.0.1' // To recognize Devanagari script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-devanagari:16.0.1' // To recognize Japanese script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-japanese:16.0.1' // To recognize Korean script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-korean:16.0.1' }
Google Play 開発者サービスでモデルを使用することを選択した場合、 自動的にモデルがデバイスにダウンロードされるように アプリが Google Play ストアからインストールされているかどうかを確認します。そのためには、次のコードを追加します。 宣言をアプリの
AndroidManifest.xml
ファイルに追加します。<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="ocr" > <!-- To use multiple models: android:value="ocr,ocr_chinese,ocr_devanagari,ocr_japanese,ocr_korean,..." --> </application>
モデルの提供状況を明示的に確認してダウンロードをリクエストすることもできます。 Google Play 開発者サービスの ModuleInstallClient API を使用する。インストール時のモデルのダウンロードを有効にしない、または明示的なダウンロードをリクエストしない場合は、スキャナの初回実行時にモデルがダウンロードされます。ダウンロードが完了する前にリクエストしても結果は生成されません。
1. TextRecognizer
のインスタンスを作成する
TextRecognizer
のインスタンスを作成し、オプションを渡します。
依存関係を宣言したライブラリに関連するコード:
Kotlin
// When using Latin script library val recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS) // When using Chinese script library val recognizer = TextRecognition.getClient(ChineseTextRecognizerOptions.Builder().build()) // When using Devanagari script library val recognizer = TextRecognition.getClient(DevanagariTextRecognizerOptions.Builder().build()) // When using Japanese script library val recognizer = TextRecognition.getClient(JapaneseTextRecognizerOptions.Builder().build()) // When using Korean script library val recognizer = TextRecognition.getClient(KoreanTextRecognizerOptions.Builder().build())
Java
// When using Latin script library TextRecognizer recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS); // When using Chinese script library TextRecognizer recognizer = TextRecognition.getClient(new ChineseTextRecognizerOptions.Builder().build()); // When using Devanagari script library TextRecognizer recognizer = TextRecognition.getClient(new DevanagariTextRecognizerOptions.Builder().build()); // When using Japanese script library TextRecognizer recognizer = TextRecognition.getClient(new JapaneseTextRecognizerOptions.Builder().build()); // When using Korean script library TextRecognizer recognizer = TextRecognition.getClient(new KoreanTextRecognizerOptions.Builder().build());
2. 入力画像を準備する
画像内のテキストを認識するには、Bitmap
、media.Image
、ByteBuffer
、バイト配列、またはデバイス上のファイルから InputImage
オブジェクトを作成します。次に、InputImage
オブジェクトを
TextRecognizer
の processImage
メソッド。
InputImage
を作成できます。
異なるソースからのオブジェクトについて、以下で説明します。
media.Image
の使用
InputImage
を作成するには:
media.Image
オブジェクトからオブジェクトをキャプチャします。たとえば、
渡すには、media.Image
オブジェクトと画像の
InputImage.fromMediaImage()
に変更します。
「
<ph type="x-smartling-placeholder"></ph>
CameraX ライブラリ、OnImageCapturedListener
、
ImageAnalysis.Analyzer
クラスが回転値を計算する
できます。
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
画像の回転角度を取得するカメラ ライブラリを使用しない場合は、デバイスの回転角度とデバイス内のカメラセンサーの向きから計算できます。
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
次に、media.Image
オブジェクトと回転角度値を InputImage.fromMediaImage()
に渡します。
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
ファイル URI の使用
InputImage
を作成するには:
渡すことにより、アプリのコンテキストとファイルの URI を
InputImage.fromFilePath()
。これは、
ACTION_GET_CONTENT
インテントを使用してユーザーに選択を求める
ギャラリーアプリから画像を作成できます
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
ByteBuffer
または ByteArray
の使用
InputImage
を作成するには:
作成するには、まず画像を計算してByteBuffer
ByteArray
前述の media.Image
入力に対する回転角度。
次に、画像の高さ、幅、カラー エンコード形式、回転角度とともに、バッファまたは配列を含む InputImage
オブジェクトを作成します。
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Bitmap
の使用
InputImage
を作成するには:
Bitmap
オブジェクトから呼び出す場合は、次のように宣言します。
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
画像は Bitmap
オブジェクトと回転角度で表されます。
3. 画像を処理する
画像を process
メソッドに渡します。
Kotlin
val result = recognizer.process(image) .addOnSuccessListener { visionText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<Text> result = recognizer.process(image) .addOnSuccessListener(new OnSuccessListener<Text>() { @Override public void onSuccess(Text visionText) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. 認識したテキストのブロックからテキストを抽出する
テキスト認識オペレーションが成功すると、Text
オブジェクトが成功リスナーに渡されます。Text
オブジェクトには、画像で認識された全テキストと、0 個以上の TextBlock
オブジェクトが含まれています。
各 TextBlock
は長方形のテキスト ブロックを表します。
これには 0 個以上の Line
オブジェクトが含まれます。各 Line
オブジェクトはテキストの 1 行を表し、0 個以上の Element
オブジェクトが含まれます。各 Element
オブジェクトは、単語または単語に似たエンティティを表し、
Symbol
オブジェクト。各 Symbol
オブジェクトは、文字、数字、または単語に似たエンティティを表します。
TextBlock
、Line
、Element
、Symbol
の各オブジェクトについて、領域内で認識されたテキスト、領域の境界座標、回転情報、信頼スコアなどの多くの属性を取得できます。
例:
Kotlin
val resultText = result.text for (block in result.textBlocks) { val blockText = block.text val blockCornerPoints = block.cornerPoints val blockFrame = block.boundingBox for (line in block.lines) { val lineText = line.text val lineCornerPoints = line.cornerPoints val lineFrame = line.boundingBox for (element in line.elements) { val elementText = element.text val elementCornerPoints = element.cornerPoints val elementFrame = element.boundingBox } } }
Java
String resultText = result.getText(); for (Text.TextBlock block : result.getTextBlocks()) { String blockText = block.getText(); Point[] blockCornerPoints = block.getCornerPoints(); Rect blockFrame = block.getBoundingBox(); for (Text.Line line : block.getLines()) { String lineText = line.getText(); Point[] lineCornerPoints = line.getCornerPoints(); Rect lineFrame = line.getBoundingBox(); for (Text.Element element : line.getElements()) { String elementText = element.getText(); Point[] elementCornerPoints = element.getCornerPoints(); Rect elementFrame = element.getBoundingBox(); for (Text.Symbol symbol : element.getSymbols()) { String symbolText = symbol.getText(); Point[] symbolCornerPoints = symbol.getCornerPoints(); Rect symbolFrame = symbol.getBoundingBox(); } } } }
入力画像のガイドライン
-
ML Kit でテキストを正確に認識するためには、入力画像に含まれているテキストが十分なピクセルデータによって表示されている必要があります。各文字が少なくとも 16x16 ピクセルであるのが理想的です。一般的には、 24x24 ピクセルを超える場合は精度が向上します。
そのため、たとえば名刺のスキャンには 640×480 の画像が適しています。 を占有します。レターサイズの用紙に印刷された文書をスキャンする場合は、720x1280 ピクセルの画像が必要になることがあります。
-
画像のフォーカスが不適切だと、テキスト認識の精度に影響する可能性があります。あなたが ユーザーに画像をキャプチャし直すよう求めます。
-
リアルタイム アプリケーションでテキストを認識する場合は、入力画像の全体サイズを考慮する必要があります。小 処理時間を短縮できます。レイテンシを短縮するには、スペースをできるだけ多く して、低解像度で画像をキャプチャします(精度は 上記の要件)。詳細については、次をご覧ください: 掲載結果を改善するためのヒント
パフォーマンスを改善するためのヒント
Camera
API またはcamera2
API を使用する場合は、検出器への呼び出しをスロットルします。検出器の実行中に新しい動画フレームが使用可能になった場合は、そのフレームをドロップします。例については、クイックスタート サンプルアプリのVisionProcessorBase
クラスをご覧ください。CameraX
API を使用する場合は、バックプレッシャー戦略がデフォルト値ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
に設定されていることを確認してください。これにより、分析のために一度に 1 つの画像のみが配信されるようになります。アナライザがビジー状態のときにさらに画像が生成された場合、それらの画像は自動的に破棄され、配信キューには追加されません。次の呼び出しによって分析中の画像を閉じたら、 ImageProxy.close() が呼び出されると、次に最新の画像が配信されます。- 検出機能の出力を使用して、ディスプレイにグラフィックをオーバーレイする場合、
まず ML Kit から結果を取得してから、画像をレンダリングする
1 ステップでオーバーレイできますこれにより、ディスプレイ サーフェスにレンダリングされます。
入力フレームごとに 1 回だけです。詳しくは、
<ph type="x-smartling-placeholder"></ph>
CameraSourcePreview
および <ph type="x-smartling-placeholder"></ph>GraphicOverlay
クラスをご覧ください。 - Camera2 API を使用する場合は、
ImageFormat.YUV_420_888
形式で画像をキャプチャします。古い Camera API を使用する場合は、ImageFormat.NV21
形式。 - より低い解像度で画像をキャプチャすることを検討してください。ただし、この API の画像サイズに関する要件にも留意してください。