Rozpoznawanie tekstu na obrazach za pomocą ML Kit na Androidzie

Za pomocą ML Kit możesz rozpoznawać tekst na obrazach lub w filmach, np. tekst na znaku drogowym. Główne cechy tej funkcji:

Funkcja Odłączone Łączenie w pakiety
Nazwa biblioteki com.google.android.gms:play-services-mlkit-text-recognition

com.google.android.gms:play-services-mlkit-text-recognition-chinese

com.google.android.gms:play-services-mlkit-text-recognition-devanagari

com.google.android.gms:play-services-mlkit-text-recognition-japanese

com.google.android.gms:play-services-mlkit-text-recognition-korean

com.google.mlkit:text-recognition

com.google.mlkit:text-recognition-chinese

com.google.mlkit:text-recognition-devanagari

com.google.mlkit:text-recognition-japanese

com.google.mlkit:text-recognition-korean

Implementacja Model jest pobierany dynamicznie za pomocą Usług Google Play. Model jest statycznie połączony z aplikacją w momencie jej tworzenia.
Rozmiar aplikacji Wzrost rozmiaru o około 260 KB na architekturę skryptu. Wzrost rozmiaru o około 4 MB na skrypt na architekturę.
Czas inicjowania Przed pierwszym użyciem może być konieczne poczekanie na pobranie modelu. Model jest dostępny od razu.
Wyniki W czasie rzeczywistym na większości urządzeń w przypadku biblioteki skryptów łacińskich, wolniej w przypadku innych. W czasie rzeczywistym na większości urządzeń w przypadku biblioteki skryptów łacińskich, wolniej w przypadku innych.

Wypróbuj

Zanim zaczniesz

  1. W pliku build.gradle na poziomie projektu dodaj repozytorium Maven firmy Google do sekcji buildscriptallprojects.
  2. Dodaj zależności dla bibliotek ML Kit na Androida do pliku Gradle na poziomie aplikacji modułu, który zwykle znajduje się w tym miejscu: app/build.gradle

    Aby połączyć model z aplikacją:

    dependencies {
      // To recognize Latin script
      implementation 'com.google.mlkit:text-recognition:16.0.1'
    
      // To recognize Chinese script
      implementation 'com.google.mlkit:text-recognition-chinese:16.0.1'
    
      // To recognize Devanagari script
      implementation 'com.google.mlkit:text-recognition-devanagari:16.0.1'
    
      // To recognize Japanese script
      implementation 'com.google.mlkit:text-recognition-japanese:16.0.1'
    
      // To recognize Korean script
      implementation 'com.google.mlkit:text-recognition-korean:16.0.1'
    }
    

    W przypadku korzystania z modelu w Usługach Google Play:

    dependencies {
      // To recognize Latin script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition:19.0.1'
    
      // To recognize Chinese script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-chinese:16.0.1'
    
      // To recognize Devanagari script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-devanagari:16.0.1'
    
      // To recognize Japanese script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-japanese:16.0.1'
    
      // To recognize Korean script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-korean:16.0.1'
    }
    
  3. Jeśli zdecydujesz się użyć modelu w Usługach Google Play, możesz skonfigurować aplikację tak, aby automatycznie pobierała model na urządzenie po zainstalowaniu aplikacji ze Sklepu Play. Aby to zrobić, dodaj do pliku AndroidManifest.xml aplikacji tę deklarację:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="ocr" >
          <!-- To use multiple models: android:value="ocr,ocr_chinese,ocr_devanagari,ocr_japanese,ocr_korean,..." -->
    </application>
    

    Możesz też wyraźnie sprawdzić dostępność modelu i poprosić o pobranie go za pomocą interfejsu ModuleInstallClient API Usług Google Play. Jeśli nie włączysz pobierania modelu w momencie instalacji lub nie poprosisz o wyraźne pobranie, model zostanie pobrany przy pierwszym uruchomieniu skanera. Żądania wysyłane przed zakończeniem pobierania nie przynoszą wyników.

1. Tworzenie instancji TextRecognizer

Utwórz instancję TextRecognizer, przekazując opcje związane z biblioteką, od której zadeklarowano zależność powyżej:

Kotlin

// When using Latin script library
val recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS)

// When using Chinese script library
val recognizer = TextRecognition.getClient(ChineseTextRecognizerOptions.Builder().build())

// When using Devanagari script library
val recognizer = TextRecognition.getClient(DevanagariTextRecognizerOptions.Builder().build())

// When using Japanese script library
val recognizer = TextRecognition.getClient(JapaneseTextRecognizerOptions.Builder().build())

// When using Korean script library
val recognizer = TextRecognition.getClient(KoreanTextRecognizerOptions.Builder().build())

Java

// When using Latin script library
TextRecognizer recognizer =
  TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS);

// When using Chinese script library
TextRecognizer recognizer =
  TextRecognition.getClient(new ChineseTextRecognizerOptions.Builder().build());

// When using Devanagari script library
TextRecognizer recognizer =
  TextRecognition.getClient(new DevanagariTextRecognizerOptions.Builder().build());

// When using Japanese script library
TextRecognizer recognizer =
  TextRecognition.getClient(new JapaneseTextRecognizerOptions.Builder().build());

// When using Korean script library
TextRecognizer recognizer =
  TextRecognition.getClient(new KoreanTextRecognizerOptions.Builder().build());

2. Przygotowywanie obrazu wejściowego

Aby rozpoznać tekst na obrazie, utwórz obiekt InputImageBitmap, media.Image, ByteBuffer, tablicy bajtów lub pliku na urządzeniu. Następnie przekaż obiekt InputImage do metody processImage obiektu TextRecognizer.

Możesz utworzyć InputImage obiekt z różnych źródeł. Każde z nich opisujemy poniżej.

Korzystanie z media.Image

Aby utworzyć obiekt InputImage z obiektu media.Image, np. podczas przechwytywania obrazu z aparatu urządzenia, przekaż obiekt media.Image i obrót obrazu do InputImage.fromMediaImage().

Jeśli używasz biblioteki CameraX, klasy OnImageCapturedListenerImageAnalysis.Analyzer obliczają wartość rotacji za Ciebie.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Jeśli nie używasz biblioteki aparatu, która podaje stopień obrotu obrazu, możesz obliczyć go na podstawie stopnia obrotu urządzenia i orientacji czujnika aparatu w urządzeniu:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Następnie przekaż obiekt media.Image i wartość stopnia obrotu do InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Używanie identyfikatora URI pliku

Aby utworzyć obiekt InputImage z identyfikatora URI pliku, przekaż kontekst aplikacji i identyfikator URI pliku do funkcji InputImage.fromFilePath(). Jest to przydatne, gdy używasz intencji ACTION_GET_CONTENT, aby poprosić użytkownika o wybranie obrazu z aplikacji galerii.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Używanie ByteBuffer lub ByteArray

Aby utworzyć obiekt InputImageByteBuffer lub ByteArray, najpierw oblicz stopień rotacji obrazu, jak opisano wcześniej w przypadku danych wejściowych media.Image. Następnie utwórz obiekt InputImage z buforem lub tablicą, a także z wysokością, szerokością, formatem kodowania kolorów i stopniem obrotu obrazu:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Korzystanie z Bitmap

Aby utworzyć obiekt InputImage z obiektu Bitmap, zadeklaruj:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Obraz jest reprezentowany przez obiekt Bitmap wraz ze stopniami obrotu.

3. Przetwarzanie obrazu

Przekaż obraz do metody process:

Kotlin

val result = recognizer.process(image)
        .addOnSuccessListener { visionText ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

Task<Text> result =
        recognizer.process(image)
                .addOnSuccessListener(new OnSuccessListener<Text>() {
                    @Override
                    public void onSuccess(Text visionText) {
                        // Task completed successfully
                        // ...
                    }
                })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

4. Wyodrębnianie tekstu z bloków rozpoznanego tekstu

Jeśli operacja rozpoznawania tekstu się powiedzie, do odbiorcy sukcesu zostanie przekazany obiekt Text. Obiekt Text zawiera pełny tekst rozpoznany na obrazie oraz co najmniej 1 obiekt TextBlock.

Każdy element TextBlock reprezentuje prostokątny blok tekstu, który zawiera co najmniej 1 obiekt Line. Każdy obiekt Line reprezentuje wiersz tekstu, który zawiera co najmniej 1 obiekt Element. Każdy obiekt Element reprezentuje słowo lub jednostkę podobną do słowa, która zawiera zero lub więcej obiektów Symbol. Każdy obiekt Symbol reprezentuje znak, cyfrę lub element podobny do słowa.

W przypadku każdego obiektu TextBlock, Line, ElementSymbol możesz uzyskać tekst rozpoznany w regionie, współrzędne ograniczające region i wiele innych atrybutów, takich jak informacje o rotacji, poziom ufności itp.

Na przykład:

Kotlin

val resultText = result.text
for (block in result.textBlocks) {
    val blockText = block.text
    val blockCornerPoints = block.cornerPoints
    val blockFrame = block.boundingBox
    for (line in block.lines) {
        val lineText = line.text
        val lineCornerPoints = line.cornerPoints
        val lineFrame = line.boundingBox
        for (element in line.elements) {
            val elementText = element.text
            val elementCornerPoints = element.cornerPoints
            val elementFrame = element.boundingBox
        }
    }
}

Java

String resultText = result.getText();
for (Text.TextBlock block : result.getTextBlocks()) {
    String blockText = block.getText();
    Point[] blockCornerPoints = block.getCornerPoints();
    Rect blockFrame = block.getBoundingBox();
    for (Text.Line line : block.getLines()) {
        String lineText = line.getText();
        Point[] lineCornerPoints = line.getCornerPoints();
        Rect lineFrame = line.getBoundingBox();
        for (Text.Element element : line.getElements()) {
            String elementText = element.getText();
            Point[] elementCornerPoints = element.getCornerPoints();
            Rect elementFrame = element.getBoundingBox();
            for (Text.Symbol symbol : element.getSymbols()) {
                String symbolText = symbol.getText();
                Point[] symbolCornerPoints = symbol.getCornerPoints();
                Rect symbolFrame = symbol.getBoundingBox();
            }
        }
    }
}

Wytyczne dotyczące obrazu wejściowego

  • Aby ML Kit mógł dokładnie rozpoznawać tekst, obrazy wejściowe muszą zawierać tekst reprezentowany przez wystarczającą ilość danych pikseli. Najlepiej, aby każdy znak miał co najmniej 16 x 16 pikseli. Zwykle nie ma korzyści w zakresie dokładności, jeśli znaki są większe niż 24 x 24 piksele.

    Obraz o wymiarach 640 x 480 może być odpowiedni do skanowania wizytówki, która zajmuje całą szerokość obrazu. Aby zeskanować dokument wydrukowany na papierze w formacie Letter, może być wymagany obraz o rozmiarze 720 × 1280 pikseli.

  • Słaba ostrość obrazu może wpływać na dokładność rozpoznawania tekstu. Jeśli wyniki nie są zadowalające, poproś użytkownika o ponowne zrobienie zdjęcia.

  • Jeśli rozpoznajesz tekst w aplikacji działającej w czasie rzeczywistym, weź pod uwagę ogólne wymiary obrazów wejściowych. Mniejsze obrazy można przetwarzać szybciej. Aby zmniejszyć opóźnienie, zadbaj o to, aby tekst zajmował jak największą część obrazu, i rób zdjęcia w niższych rozdzielczościach (pamiętając o wymaganiach dotyczących dokładności wspomnianych powyżej). Więcej informacji znajdziesz w artykule Wskazówki dotyczące zwiększania skuteczności.

Wskazówki dotyczące poprawy skuteczności

  • Jeśli używasz interfejsu API Camera lub camera2, ogranicz wywołania detektora. Jeśli podczas działania detektora pojawi się nowa klatka wideo, odrzuć ją. Przykład znajdziesz w klasie VisionProcessorBase w przykładowej aplikacji z krótkiego wprowadzenia.
  • Jeśli używasz interfejsu CameraX API, upewnij się, że strategia ograniczenia przepustowości ma wartość domyślną ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. Gwarantuje to, że do analizy będzie przesyłany tylko 1 obraz naraz. Jeśli w czasie, gdy analizator jest zajęty, zostanie wygenerowanych więcej obrazów, zostaną one automatycznie odrzucone i nie zostaną umieszczone w kolejce do dostarczenia. Gdy analizowany obraz zostanie zamknięty przez wywołanie ImageProxy.close(), zostanie dostarczony kolejny najnowszy obraz.
  • Jeśli używasz danych wyjściowych detektora do nakładania grafiki na obraz wejściowy, najpierw uzyskaj wynik z ML Kit, a następnie w jednym kroku wyrenderuj obraz i nałóż na niego grafikę. Jest on renderowany na powierzchni wyświetlacza tylko raz dla każdej ramki wejściowej. Przykład znajdziesz w klasach CameraSourcePreview GraphicOverlay w przykładowej aplikacji z krótkiego wprowadzenia.
  • Jeśli używasz interfejsu Camera2 API, rób zdjęcia w formacie ImageFormat.YUV_420_888. Jeśli używasz starszego interfejsu Camera API, rób zdjęcia w formacie ImageFormat.NV21.
  • Rozważ robienie zdjęć w niższej rozdzielczości. Pamiętaj jednak o wymaganiach dotyczących wymiarów obrazu w tym interfejsie API.