จดจำข้อความในรูปภาพด้วย ML Kit บน Android

คุณสามารถใช้ ML Kit เพื่อจดจำข้อความในรูปภาพหรือวิดีโอ เช่น ข้อความบนป้ายถนน ลักษณะหลักๆ ของฟีเจอร์นี้ ได้แก่

ฟีเจอร์ ไม่ได้รวมกลุ่ม รวมกลุ่ม
ชื่อห้องสมุด com.google.android.gms:play-services-mlkit-text-recognition

com.google.android.gms:play-services-mlkit-text-recognition-chinese

com.google.android.gms:play-services-mlkit-text-recognition-devanagari

com.google.android.gms:play-services-mlkit-text-recognition-japanese

com.google.android.gms:play-services-mlkit-text-recognition-korean

com.google.mlkit:text-recognition

com.google.mlkit:text-recognition-chinese

com.google.mlkit:text-recognition-devanagari

com.google.mlkit:text-recognition-japanese

com.google.mlkit:text-recognition-korean

การใช้งาน ระบบจะดาวน์โหลดโมเดลแบบไดนามิกผ่านบริการ Google Play โมเดลลิงก์กับแอปของคุณแบบคงที่ ณ เวลาบิลด์
ขนาดแอป ขนาดที่เพิ่มขึ้นประมาณ 260 KB ต่อสถาปัตยกรรมสคริปต์ มีขนาดเพิ่มขึ้นประมาณ 4 MB ต่อสคริปต์ต่อสถาปัตยกรรม
เวลาที่ใช้ในการเริ่มต้น คุณอาจต้องรอให้โมเดลดาวน์โหลดก่อนใช้งานครั้งแรก โมเดลพร้อมใช้งานทันที
ประสิทธิภาพ เรียลไทม์ในอุปกรณ์ส่วนใหญ่สำหรับคลังแบบอักษรละติน และจะช้ากว่าในอุปกรณ์อื่นๆ เรียลไทม์ในอุปกรณ์ส่วนใหญ่สำหรับคลังแบบอักษรละติน และจะช้ากว่าในอุปกรณ์อื่นๆ

ลองเลย

  • ลองใช้แอปตัวอย่างเพื่อดูตัวอย่างการใช้งาน API นี้
  • ลองเขียนโค้ดเองด้วย Codelab

ก่อนเริ่มต้น

  1. ในไฟล์ build.gradle ระดับโปรเจ็กต์ อย่าลืมรวมที่เก็บ Maven ของ Google ไว้ทั้งในส่วน buildscript และ allprojects
  2. เพิ่มทรัพยากร Dependency สำหรับไลบรารี ML Kit Android ลงในไฟล์ Gradle ระดับแอปของโมดูล ซึ่งปกติคือ app/build.gradle

    สำหรับการรวมโมเดลกับแอป

    dependencies {
      // To recognize Latin script
      implementation 'com.google.mlkit:text-recognition:16.0.1'
    
      // To recognize Chinese script
      implementation 'com.google.mlkit:text-recognition-chinese:16.0.1'
    
      // To recognize Devanagari script
      implementation 'com.google.mlkit:text-recognition-devanagari:16.0.1'
    
      // To recognize Japanese script
      implementation 'com.google.mlkit:text-recognition-japanese:16.0.1'
    
      // To recognize Korean script
      implementation 'com.google.mlkit:text-recognition-korean:16.0.1'
    }
    

    สำหรับการใช้โมเดลในบริการ Google Play

    dependencies {
      // To recognize Latin script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition:19.0.1'
    
      // To recognize Chinese script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-chinese:16.0.1'
    
      // To recognize Devanagari script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-devanagari:16.0.1'
    
      // To recognize Japanese script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-japanese:16.0.1'
    
      // To recognize Korean script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-korean:16.0.1'
    }
    
  3. หากเลือกใช้โมเดลในบริการ Google Play คุณจะทำสิ่งต่อไปนี้ได้ กําหนดค่าแอปให้ดาวน์โหลดโมเดลลงในอุปกรณ์โดยอัตโนมัติหลังจาก แอปของคุณติดตั้งจาก Play Store แล้ว วิธีการคือ ให้เพิ่มค่าต่อไปนี้ ลงในไฟล์ AndroidManifest.xml ของแอป

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="ocr" >
          <!-- To use multiple models: android:value="ocr,ocr_chinese,ocr_devanagari,ocr_japanese,ocr_korean,..." -->
    </application>
    

    นอกจากนี้ คุณยังตรวจสอบความพร้อมใช้งานของโมเดลและขอดาวน์โหลดได้อย่างชัดเจนผ่าน ModuleInstallClient API ของบริการ Google Play หากคุณไม่เปิดใช้โมเดลเวลาติดตั้ง ดาวน์โหลดหรือร้องขอการดาวน์โหลดที่ชัดเจน โมเดลจะถูกดาวน์โหลดก่อน ต่อเวลาที่เครื่องสแกนทำงาน คำขอที่คุณสร้างขึ้นก่อนการดาวน์โหลด ที่เสร็จสมบูรณ์ไม่ได้สร้างผลลัพธ์ใดๆ

1. สร้างอินสแตนซ์ของ TextRecognizer

สร้างอินสแตนซ์ของ TextRecognizer โดยส่งตัวเลือกที่เกี่ยวข้องกับไลบรารีที่คุณประกาศเป็น Dependency ไว้ด้านบน

Kotlin

// When using Latin script library
val recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS)

// When using Chinese script library
val recognizer = TextRecognition.getClient(ChineseTextRecognizerOptions.Builder().build())

// When using Devanagari script library
val recognizer = TextRecognition.getClient(DevanagariTextRecognizerOptions.Builder().build())

// When using Japanese script library
val recognizer = TextRecognition.getClient(JapaneseTextRecognizerOptions.Builder().build())

// When using Korean script library
val recognizer = TextRecognition.getClient(KoreanTextRecognizerOptions.Builder().build())

Java

// When using Latin script library
TextRecognizer recognizer =
  TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS);

// When using Chinese script library
TextRecognizer recognizer =
  TextRecognition.getClient(new ChineseTextRecognizerOptions.Builder().build());

// When using Devanagari script library
TextRecognizer recognizer =
  TextRecognition.getClient(new DevanagariTextRecognizerOptions.Builder().build());

// When using Japanese script library
TextRecognizer recognizer =
  TextRecognition.getClient(new JapaneseTextRecognizerOptions.Builder().build());

// When using Korean script library
TextRecognizer recognizer =
  TextRecognition.getClient(new KoreanTextRecognizerOptions.Builder().build());

2. เตรียมรูปภาพอินพุต

หากต้องการจดจำข้อความในรูปภาพ ให้สร้างออบเจ็กต์ InputImage จาก Bitmap, media.Image, ByteBuffer, อาร์เรย์ไบต์ หรือไฟล์ในอุปกรณ์ จากนั้นส่งออบเจ็กต์ InputImage ไปยังเมธอด processImage ของ TextRecognizer

คุณสามารถสร้างInputImage จากแหล่งที่มาต่างๆ ซึ่งอธิบายไว้ด้านล่าง

กำลังใช้media.Image

วิธีสร้าง InputImage จากออบเจ็กต์ media.Image เช่น เมื่อคุณจับภาพจาก กล้องของอุปกรณ์ ส่งวัตถุ media.Image และ การหมุนเวียนเป็น InputImage.fromMediaImage()

หากคุณใช้แท็ก ไลบรารี CameraX, OnImageCapturedListener และ ImageAnalysis.Analyzer คลาสจะคำนวณค่าการหมุนเวียน ให้กับคุณ

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

หากคุณไม่ได้ใช้ไลบรารีกล้องถ่ายรูปที่ให้องศาการหมุนของภาพ คุณ สามารถคำนวณค่าจากองศาการหมุนของอุปกรณ์และการวางแนวของกล้อง เซ็นเซอร์ในอุปกรณ์:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

จากนั้นส่งออบเจ็กต์ media.Image และค่าองศาการหมุนไปยัง InputImage.fromMediaImage() ดังนี้

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

การใช้ URI ของไฟล์

หากต้องการสร้างออบเจ็กต์ InputImage จาก URI ของไฟล์ ให้ส่งผ่านบริบทแอปและ URI ของไฟล์ไปยัง InputImage.fromFilePath() วิธีนี้มีประโยชน์เมื่อคุณ ใช้ Intent ACTION_GET_CONTENT เพื่อแจ้งให้ผู้ใช้เลือก รูปภาพจากแอปแกลเลอรี

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

การใช้ ByteBuffer หรือ ByteArray

วิธีสร้าง InputImage จาก ByteBuffer หรือ ByteArray ให้คำนวณรูปภาพก่อน องศาการหมุนตามที่อธิบายไว้ก่อนหน้านี้สำหรับอินพุต media.Image จากนั้นสร้างออบเจ็กต์ InputImage ด้วยบัฟเฟอร์หรืออาร์เรย์ พร้อมกับความสูง ความกว้าง รูปแบบการเข้ารหัสสี และองศาการหมุนของรูปภาพ

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

การใช้ Bitmap

หากต้องการสร้างออบเจ็กต์ InputImageจากออบเจ็กต์ Bitmap ให้ประกาศดังนี้

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

รูปภาพจะแสดงเป็นวัตถุ Bitmap ร่วมกับองศาการหมุน

3. ประมวลผลรูปภาพ

ส่งรูปภาพไปยังเมธอด process โดยทำดังนี้

Kotlin

val result = recognizer.process(image)
        .addOnSuccessListener { visionText ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

Task<Text> result =
        recognizer.process(image)
                .addOnSuccessListener(new OnSuccessListener<Text>() {
                    @Override
                    public void onSuccess(Text visionText) {
                        // Task completed successfully
                        // ...
                    }
                })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

4. ดึงข้อความจากบล็อกข้อความที่รู้จัก

หากการดำเนินการจดจำข้อความสำเร็จ ระบบจะส่งออบเจ็กต์ Text ไปยัง ผู้ฟังที่ประสบความสำเร็จ ออบเจ็กต์ Text มีข้อความแบบเต็มที่รู้จักใน รูปภาพและออบเจ็กต์ TextBlock จำนวนศูนย์รายการขึ้นไป

TextBlock แต่ละรายการแสดงบล็อกข้อความสี่เหลี่ยมผืนผ้าซึ่งมีออบเจ็กต์ Line อย่างน้อย 1 รายการ ออบเจ็กต์ Line แต่ละรายการแสดงถึงบรรทัดข้อความซึ่งมีออบเจ็กต์ Element อย่างน้อย 1 รายการ Element แต่ละรายการ เป็นคำหรือเอนทิตีที่มีลักษณะคล้ายคำ ซึ่งมี 0 คำขึ้นไป ออบเจ็กต์ Symbol รายการ Symbol แต่ละรายการ แทนอักขระ ตัวเลข หรือเอนทิตีที่มีลักษณะคล้ายคำ

สําหรับ TextBlock, Line แต่ละรายการ Element และ Symbol คุณ สามารถรับข้อความที่รู้จักในภูมิภาค พิกัดขอบเขตของ ภูมิภาคและแอตทริบิวต์อื่นๆ อีกมากมาย เช่น ข้อมูลการหมุนเวียน คะแนนความเชื่อมั่น อื่นๆ

เช่น

Kotlin

val resultText = result.text
for (block in result.textBlocks) {
    val blockText = block.text
    val blockCornerPoints = block.cornerPoints
    val blockFrame = block.boundingBox
    for (line in block.lines) {
        val lineText = line.text
        val lineCornerPoints = line.cornerPoints
        val lineFrame = line.boundingBox
        for (element in line.elements) {
            val elementText = element.text
            val elementCornerPoints = element.cornerPoints
            val elementFrame = element.boundingBox
        }
    }
}

Java

String resultText = result.getText();
for (Text.TextBlock block : result.getTextBlocks()) {
    String blockText = block.getText();
    Point[] blockCornerPoints = block.getCornerPoints();
    Rect blockFrame = block.getBoundingBox();
    for (Text.Line line : block.getLines()) {
        String lineText = line.getText();
        Point[] lineCornerPoints = line.getCornerPoints();
        Rect lineFrame = line.getBoundingBox();
        for (Text.Element element : line.getElements()) {
            String elementText = element.getText();
            Point[] elementCornerPoints = element.getCornerPoints();
            Rect elementFrame = element.getBoundingBox();
            for (Text.Symbol symbol : element.getSymbols()) {
                String symbolText = symbol.getText();
                Point[] symbolCornerPoints = symbol.getCornerPoints();
                Rect symbolFrame = symbol.getBoundingBox();
            }
        }
    }
}

หลักเกณฑ์เกี่ยวกับรูปภาพที่ป้อน

  • รูปภาพอินพุตต้องมีข้อความที่แสดงด้วยข้อมูลพิกเซลที่เพียงพอเพื่อให้ ML Kit จดจำข้อความได้อย่างแม่นยำ โดยหลักการแล้ว แต่ละอักขระควรมีขนาดอย่างน้อย 16x16 พิกเซล โดยทั่วไปแล้ว จะไม่มีข้อดีด้านความแม่นยำหากอักขระมีขนาดใหญ่กว่า 24x24 พิกเซล

    ตัวอย่างเช่น รูปภาพขนาด 640x480 อาจเหมาะสำหรับการสแกนนามบัตร ที่ใช้พื้นที่เต็มความกว้างของรูปภาพ หากต้องการสแกนเอกสารที่พิมพ์บนกระดาษขนาดจดหมาย คุณอาจต้องใช้รูปภาพขนาด 720x1280 พิกเซล

  • ภาพที่โฟกัสไม่ดีอาจส่งผลต่อความแม่นยำในการจดจำข้อความ หากไม่ได้ผลลัพธ์ที่ยอมรับได้ ให้ลองขอให้ผู้ใช้ถ่ายภาพอีกครั้ง

  • หากคุณจำข้อความในแอปพลิเคชันแบบเรียลไทม์ คุณควร พิจารณาขนาดโดยรวมของรูปภาพที่ป้อน เล็กลง จะประมวลผลได้เร็วขึ้นด้วย หากต้องการลดเวลาในการตอบสนอง ให้ตรวจสอบว่าข้อความมีพื้นที่ในรูปภาพมากที่สุดเท่าที่จะเป็นไปได้ และจับภาพด้วยความละเอียดที่ต่ำลง (โดยคำนึงถึงข้อกำหนดด้านความถูกต้องที่กล่าวถึงข้างต้น) สำหรับข้อมูลเพิ่มเติม โปรดดู เคล็ดลับในการปรับปรุงประสิทธิภาพ

เคล็ดลับในการปรับปรุงประสิทธิภาพ

  • หากคุณใช้ Camera หรือ camera2 API ให้จำกัดการเรียกใช้เครื่องตรวจจับ หากเฟรมวิดีโอใหม่พร้อมใช้งานขณะที่ตัวตรวจจับทำงานอยู่ ให้วางเฟรม โปรดดู VisionProcessorBase ในแอปตัวอย่างการเริ่มต้นอย่างรวดเร็วสำหรับตัวอย่าง
  • หากคุณใช้ CameraX API ตรวจสอบว่ากลยุทธ์ Backpressure เป็นค่าเริ่มต้น ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST ซึ่งทำให้ระบบนำส่งรูปภาพเพียง 1 รูปเพื่อทำการวิเคราะห์ต่อครั้งเท่านั้น หากมีการสร้างรูปภาพเพิ่มเติมเมื่อเครื่องมือวิเคราะห์ไม่ว่าง ระบบจะทิ้งรูปภาพเหล่านั้นโดยอัตโนมัติและจะไม่จัดคิวเพื่อนำส่ง เมื่อปิดการวิเคราะห์รูปภาพด้วยการเรียกใช้ ImageProxy.close() ระบบจะส่งรูปภาพล่าสุดถัดไป
  • หากคุณใช้เอาต์พุตของเครื่องมือตรวจจับเพื่อวางซ้อนกราฟิก รูปภาพอินพุต รับผลลัพธ์จาก ML Kit ก่อน จากนั้นจึงแสดงผลรูปภาพ ซ้อนทับในขั้นตอนเดียว การดำเนินการนี้จะแสดงผลบนพื้นผิวการแสดงผลเพียงครั้งเดียวสำหรับเฟรมอินพุตแต่ละเฟรม ดูตัวอย่างได้จากคลาส CameraSourcePreview และ GraphicOverlay ในแอปตัวอย่างการเริ่มต้นใช้งาน
  • หากคุณใช้ Camera2 API ให้จับภาพในรูปแบบ ImageFormat.YUV_420_888 หากคุณใช้ Camera API รุ่นเก่า ให้จับภาพใน ImageFormat.NV21
  • ลองถ่ายภาพด้วยความละเอียดต่ำลง อย่างไรก็ตาม โปรดคำนึงถึงข้อกำหนดด้านขนาดรูปภาพของ API นี้ด้วย