Распознавайте текст на изображениях с помощью ML Kit на Android

Вы можете использовать ML Kit для распознавания текста на изображениях или видео, например текста дорожных знаков. Основными характеристиками этой функции являются:

Особенность Разделенный В комплекте
Название библиотеки com.google.android.gms:play-services-mlkit-text-recognition

com.google.android.gms:play-services-mlkit-text-recognition-chinese

com.google.android.gms:play-services-mlkit-text-recognition-devanagari

com.google.android.gms:play-services-mlkit-text-recognition-japanese

com.google.android.gms:play-services-mlkit-text-recognition-korean

com.google.mlkit:распознавание текста

com.google.mlkit:распознавание текста-китайский

com.google.mlkit:распознавание текста-деванагари

com.google.mlkit:распознавание текста-японский

com.google.mlkit:текст-распознавание-корейский

Выполнение Модель динамически загружается через сервисы Google Play. Модель статически связана с вашим приложением во время сборки.
Размер приложения Увеличение размера примерно на 260 КБ для каждой архитектуры сценария. Увеличение размера примерно на 4 МБ на каждый сценарий для каждой архитектуры.
Время инициализации Возможно, придется подождать загрузки модели перед первым использованием. Модель доступна сразу.
Производительность В режиме реального времени на большинстве устройств для библиотеки латинского алфавита, медленнее для других. В режиме реального времени на большинстве устройств для библиотеки латинского алфавита, медленнее для других.

Попробуйте это

  • Поэкспериментируйте с примером приложения, чтобы увидеть пример использования этого API.
  • Попробуйте код самостоятельно с помощью codelab .

Прежде чем начать

  1. В файле build.gradle на уровне проекта обязательно включите репозиторий Google Maven как в buildscript , так и в разделы allprojects .
  2. Добавьте зависимости для библиотек Android ML Kit в файл градиента уровня приложения вашего модуля, который обычно имеет app/build.gradle :

    Для объединения модели с вашим приложением:

    dependencies {
      // To recognize Latin script
      implementation 'com.google.mlkit:text-recognition:16.0.1'
    
      // To recognize Chinese script
      implementation 'com.google.mlkit:text-recognition-chinese:16.0.1'
    
      // To recognize Devanagari script
      implementation 'com.google.mlkit:text-recognition-devanagari:16.0.1'
    
      // To recognize Japanese script
      implementation 'com.google.mlkit:text-recognition-japanese:16.0.1'
    
      // To recognize Korean script
      implementation 'com.google.mlkit:text-recognition-korean:16.0.1'
    }
    

    Для использования модели в Сервисах Google Play:

    dependencies {
      // To recognize Latin script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition:19.0.1'
    
      // To recognize Chinese script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-chinese:16.0.1'
    
      // To recognize Devanagari script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-devanagari:16.0.1'
    
      // To recognize Japanese script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-japanese:16.0.1'
    
      // To recognize Korean script
      implementation 'com.google.android.gms:play-services-mlkit-text-recognition-korean:16.0.1'
    }
    
  3. Если вы решите использовать модель в Сервисах Google Play , вы можете настроить свое приложение на автоматическую загрузку модели на устройство после установки приложения из Play Store. Для этого добавьте следующее объявление в файл AndroidManifest.xml вашего приложения:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="ocr" >
          <!-- To use multiple models: android:value="ocr,ocr_chinese,ocr_devanagari,ocr_japanese,ocr_korean,..." -->
    </application>
    

    Вы также можете явно проверить доступность модели и запросить загрузку через API сервисов Google Play ModuleInstallClient . Если вы не включите загрузку модели во время установки или не запрашиваете явную загрузку, модель загружается при первом запуске сканера. Запросы, которые вы делаете до завершения загрузки, не дают результатов.

1. Создайте экземпляр TextRecognizer

Создайте экземпляр TextRecognizer , передав параметры, относящиеся к библиотеке, зависимость от которой вы объявили выше:

Котлин

// When using Latin script library
val recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS)

// When using Chinese script library
val recognizer = TextRecognition.getClient(ChineseTextRecognizerOptions.Builder().build())

// When using Devanagari script library
val recognizer = TextRecognition.getClient(DevanagariTextRecognizerOptions.Builder().build())

// When using Japanese script library
val recognizer = TextRecognition.getClient(JapaneseTextRecognizerOptions.Builder().build())

// When using Korean script library
val recognizer = TextRecognition.getClient(KoreanTextRecognizerOptions.Builder().build())

Ява

// When using Latin script library
TextRecognizer recognizer =
  TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS);

// When using Chinese script library
TextRecognizer recognizer =
  TextRecognition.getClient(new ChineseTextRecognizerOptions.Builder().build());

// When using Devanagari script library
TextRecognizer recognizer =
  TextRecognition.getClient(new DevanagariTextRecognizerOptions.Builder().build());

// When using Japanese script library
TextRecognizer recognizer =
  TextRecognition.getClient(new JapaneseTextRecognizerOptions.Builder().build());

// When using Korean script library
TextRecognizer recognizer =
  TextRecognition.getClient(new KoreanTextRecognizerOptions.Builder().build());

2. Подготовьте входное изображение

Чтобы распознать текст в изображении, создайте объект InputImage из Bitmap , media.Image , ByteBuffer , массива байтов или файла на устройстве. Затем передайте объект InputImage методу processImage TextRecognizer .

Вы можете создать объект InputImage из разных источников, каждый из которых описан ниже.

Использование media.Image

Чтобы создать объект InputImage из объекта media.Image , например, при захвате изображения с камеры устройства, передайте объект media.Image и поворот изображения в InputImage.fromMediaImage() .

Если вы используете библиотеку CameraX , классы OnImageCapturedListener и ImageAnalysis.Analyzer вычисляют значение поворота за вас.

Котлин

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Ява

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Если вы не используете библиотеку камер, которая дает вам степень поворота изображения, вы можете рассчитать ее на основе степени поворота устройства и ориентации датчика камеры в устройстве:

Котлин

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Ява

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Затем передайте объект media.Image и значение степени поворота в InputImage.fromMediaImage() :

Котлин

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Использование URI файла

Чтобы создать объект InputImage из URI файла, передайте контекст приложения и URI файла в InputImage.fromFilePath() . Это полезно, когда вы используете намерение ACTION_GET_CONTENT , чтобы предложить пользователю выбрать изображение из приложения галереи.

Котлин

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Использование ByteBuffer или ByteArray

Чтобы создать объект InputImage из ByteBuffer или ByteArray , сначала вычислите степень поворота изображения, как описано ранее для ввода media.Image . Затем создайте объект InputImage с буфером или массивом вместе с высотой, шириной изображения, форматом цветовой кодировки и степенью поворота:

Котлин

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Ява

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Использование Bitmap

Чтобы создать объект InputImage из объекта Bitmap , сделайте следующее объявление:

Котлин

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Изображение представлено объектом Bitmap вместе с градусами поворота.

3. Обработка изображения

Передайте изображение методу process :

Котлин

val result = recognizer.process(image)
        .addOnSuccessListener { visionText ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Ява

Task<Text> result =
        recognizer.process(image)
                .addOnSuccessListener(new OnSuccessListener<Text>() {
                    @Override
                    public void onSuccess(Text visionText) {
                        // Task completed successfully
                        // ...
                    }
                })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

4. Извлечение текста из блоков распознанного текста.

Если операция распознавания текста завершается успешно, объект Text передается прослушивателю успеха. Объект Text содержит полный текст, распознанный в изображении, а также ноль или более объектов TextBlock .

Каждый TextBlock представляет собой прямоугольный блок текста, который содержит ноль или более объектов Line . Каждый объект Line представляет собой строку текста, которая содержит ноль или более объектов Element . Каждый объект Element представляет слово или словоподобный объект, который содержит ноль или более объектов Symbol . Каждый объект Symbol представляет символ, цифру или словоподобный объект.

Для каждого объекта TextBlock , Line , Element и Symbol вы можете получить текст, распознанный в регионе, ограничивающие координаты региона и многие другие атрибуты, такие как информация о повороте, показатель достоверности и т. д.

Например:

Котлин

val resultText = result.text
for (block in result.textBlocks) {
    val blockText = block.text
    val blockCornerPoints = block.cornerPoints
    val blockFrame = block.boundingBox
    for (line in block.lines) {
        val lineText = line.text
        val lineCornerPoints = line.cornerPoints
        val lineFrame = line.boundingBox
        for (element in line.elements) {
            val elementText = element.text
            val elementCornerPoints = element.cornerPoints
            val elementFrame = element.boundingBox
        }
    }
}

Ява

String resultText = result.getText();
for (Text.TextBlock block : result.getTextBlocks()) {
    String blockText = block.getText();
    Point[] blockCornerPoints = block.getCornerPoints();
    Rect blockFrame = block.getBoundingBox();
    for (Text.Line line : block.getLines()) {
        String lineText = line.getText();
        Point[] lineCornerPoints = line.getCornerPoints();
        Rect lineFrame = line.getBoundingBox();
        for (Text.Element element : line.getElements()) {
            String elementText = element.getText();
            Point[] elementCornerPoints = element.getCornerPoints();
            Rect elementFrame = element.getBoundingBox();
            for (Text.Symbol symbol : element.getSymbols()) {
                String symbolText = symbol.getText();
                Point[] symbolCornerPoints = symbol.getCornerPoints();
                Rect symbolFrame = symbol.getBoundingBox();
            }
        }
    }
}

Рекомендации по входному изображению

  • Чтобы ML Kit мог точно распознавать текст, входные изображения должны содержать текст, представленный достаточным количеством пиксельных данных. В идеале каждый символ должен быть размером не менее 16x16 пикселей. Символы размером более 24x24 пикселей, как правило, не повышают точность.

    Так, например, изображение размером 640x480 может подойти для сканирования визитной карточки, занимающей всю ширину изображения. Для сканирования документа, напечатанного на бумаге формата Letter, может потребоваться изображение размером 720x1280 пикселей.

  • Плохая фокусировка изображения может повлиять на точность распознавания текста. Если вы не получили приемлемых результатов, попробуйте попросить пользователя повторно сделать снимок.

  • Если вы распознаете текст в приложении реального времени, вам следует учитывать общие размеры входных изображений. Изображения меньшего размера можно обрабатывать быстрее. Чтобы уменьшить задержку, убедитесь, что текст занимает как можно большую часть изображения, и захватывайте изображения с более низким разрешением (принимая во внимание упомянутые выше требования к точности). Дополнительные сведения см. в разделе Советы по повышению производительности .

Советы по повышению производительности

  • Если вы используете API-интерфейс Camera или camera2 , регулируйте вызовы детектора. Если новый видеокадр становится доступным во время работы детектора, удалите этот кадр. Пример см. в классе VisionProcessorBase в примере приложения для быстрого запуска.
  • Если вы используете API CameraX , убедитесь, что для стратегии обратного давления установлено значение по умолчанию ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST . Это гарантирует, что для анализа одновременно будет передано только одно изображение. Если во время занятости анализатора создаются дополнительные изображения, они будут автоматически удалены и не будут поставлены в очередь для доставки. Как только анализируемое изображение будет закрыто с помощью вызова ImageProxy.close(), будет доставлено следующее последнее изображение.
  • Если вы используете выходные данные детектора для наложения графики на входное изображение, сначала получите результат из ML Kit, затем визуализируйте изображение и наложите его за один шаг. Это визуализируется на поверхности дисплея только один раз для каждого входного кадра. Пример см. в классах CameraSourcePreview и GraphicOverlay в примере приложения для быстрого запуска.
  • Если вы используете API Camera2, захватывайте изображения в формате ImageFormat.YUV_420_888 . Если вы используете более старый API камеры, захватывайте изображения в формате ImageFormat.NV21 .
  • Рассмотрите возможность захвата изображений с более низким разрешением. Однако также имейте в виду требования к размеру изображения этого API.