您可以使用 ML Kit 辨識圖片或影片中的文字,例如路標。這項功能的主要特徵如下:
功能 | 未組合 | 組合 |
---|---|---|
程式庫名稱 | com.google.android.gms:play-services-mlkit-text-reRecognitiontion com.google.android.gms:play-services-mlkit-text-reRecognitiontion-chinese com.google.android.gms:play-services-mlkit-text-reRecognitiontion-devanagari com.google.android.gms:play-services-mlkit-text-reRecognitiontion-japanese com.google.android.gms:play-services-mlkit-text-reRecognitiontion-korean |
com.google.mlkit:text-reRecognitiontion com.google.mlkit:text-reRecognitiontion-chinese com.google.mlkit:text-reRecognitiontion-devanagari com.google.mlkit:text-reRecognitiontion-japanese com.google.mlkit:text-reRecognitiontion-korean |
實作 | 模型會透過 Google Play 服務動態下載。 | 建構時,模型會以靜態方式連結至您的應用程式。 |
應用程式大小 | 每個指令碼架構約約 260 KB。 | 每個架構每個指令碼的大小約為 4 MB。 |
初始化時間 | 可能必須先等待模型下載才能使用。 | 您可以立即使用模型。 |
效能 | 在大部分裝置上,拉丁美洲指令碼程式庫的即時運作速度較快。 | 在大部分裝置上,拉丁美洲指令碼程式庫的即時運作速度較快。 |
立即體驗
事前準備
- 在專案層級的
build.gradle
檔案中,請務必將 Google 的 Maven 存放區加進buildscript
和allprojects
區段。 將 ML Kit Android 程式庫的依附元件新增至模組的應用程式層級 Gradle 檔案,通常為
app/build.gradle
:綁定模型與應用程式的影響:
dependencies { // To recognize Latin script implementation 'com.google.mlkit:text-recognition:16.0.0' // To recognize Chinese script implementation 'com.google.mlkit:text-recognition-chinese:16.0.0' // To recognize Devanagari script implementation 'com.google.mlkit:text-recognition-devanagari:16.0.0' // To recognize Japanese script implementation 'com.google.mlkit:text-recognition-japanese:16.0.0' // To recognize Korean script implementation 'com.google.mlkit:text-recognition-korean:16.0.0' }
在 Google Play 服務中使用模型:
dependencies { // To recognize Latin script implementation 'com.google.android.gms:play-services-mlkit-text-recognition:19.0.0' // To recognize Chinese script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-chinese:16.0.0' // To recognize Devanagari script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-devanagari:16.0.0' // To recognize Japanese script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-japanese:16.0.0' // To recognize Korean script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-korean:16.0.0' }
如果您選擇在 Google Play 服務中使用模型,您可以設定應用程式,讓應用程式從 Play 商店安裝該應用程式後,自動下載到裝置上。為此,請在應用程式的
AndroidManifest.xml
檔案中新增以下宣告:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="ocr" > <!-- To use multiple models: android:value="ocr,ocr_chinese,ocr_devanagari,ocr_japanese,ocr_korean,..." --> </application>
您也可以透過 Google Play 服務 ModuleInstallClient API 明確檢查模型可用性及要求下載。如果不啟用安裝時模型下載或要求明確下載,模型會在首次執行掃描器時下載。在下載前完成的要求都沒有產生任何結果。
1. 建立 TextRecognizer
的執行個體
建立 TextRecognizer
的執行個體,並傳遞與上述依附元件相關的程式庫相關的選項:
Kotlin
// When using Latin script library val recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS) // When using Chinese script library val recognizer = TextRecognition.getClient(ChineseTextRecognizerOptions.Builder().build()) // When using Devanagari script library val recognizer = TextRecognition.getClient(DevanagariTextRecognizerOptions.Builder().build()) // When using Japanese script library val recognizer = TextRecognition.getClient(JapaneseTextRecognizerOptions.Builder().build()) // When using Korean script library val recognizer = TextRecognition.getClient(KoreanTextRecognizerOptions.Builder().build())
Java
// When using Latin script library TextRecognizer recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS); // When using Chinese script library TextRecognizer recognizer = TextRecognition.getClient(new ChineseTextRecognizerOptions.Builder().build()); // When using Devanagari script library TextRecognizer recognizer = TextRecognition.getClient(new DevanagariTextRecognizerOptions.Builder().build()); // When using Japanese script library TextRecognizer recognizer = TextRecognition.getClient(new JapaneseTextRecognizerOptions.Builder().build()); // When using Korean script library TextRecognizer recognizer = TextRecognition.getClient(new KoreanTextRecognizerOptions.Builder().build());
2. 準備輸入圖片
如要識別圖片中的文字,請從 Bitmap
、media.Image
、ByteBuffer
、位元組陣列或裝置上的檔案建立 InputImage
物件。然後,請將 InputImage
物件傳遞至 TextRecognizer
的 processImage
方法。
您可以從不同來源建立 InputImage
物件,詳情請參閱下文。
使用 media.Image
如要從 media.Image
物件建立 InputImage
物件 (例如從裝置的相機擷取圖片時),請將 media.Image
物件和圖片的旋轉傳遞至 InputImage.fromMediaImage()
。
使用
CameraX 程式庫時,OnImageCapturedListener
和 ImageAnalysis.Analyzer
類別會為你計算旋轉值。
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
如果未使用相機提供圖片旋轉角度的相機,則可以從裝置的旋轉角度和裝置相機感應器的方向進行計算:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
然後將 media.Image
物件和旋轉角度值傳遞至 InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
使用檔案 URI
如要從檔案 URI 建立 InputImage
物件,請將應用程式結構定義和檔案 URI 傳遞至 InputImage.fromFilePath()
。如果您使用 ACTION_GET_CONTENT
意圖提示使用者從圖片庫應用程式中選取圖片,這個方法就非常實用。
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
使用 ByteBuffer
或 ByteArray
如要從 ByteBuffer
或 ByteArray
建立 InputImage
物件,請先按照之前的 media.Image
輸入值計算圖片旋轉角度。接著,使用緩衝區或陣列建立 InputImage
物件,以及圖片的高度、寬度、顏色編碼格式和旋轉角度:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
使用 Bitmap
如要從 Bitmap
物件建立 InputImage
物件,請進行以下宣告:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
圖片會以 Bitmap
物件搭配旋轉角度表示。
3. 處理圖片
將圖片傳遞至 process
方法:
Kotlin
val result = recognizer.process(image) .addOnSuccessListener { visionText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<Text> result = recognizer.process(image) .addOnSuccessListener(new OnSuccessListener<Text>() { @Override public void onSuccess(Text visionText) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. 從已辨識的文字區塊擷取文字
如果文字辨識作業成功,系統會將 Text
物件傳遞至成功監聽器。Text
物件包含在圖片中識別的完整文字,以及零或多個 TextBlock
物件。
每個 TextBlock
都代表一個文字區塊的矩形區塊,內含零或多個 Line
物件。每個 Line
物件都代表一行文字,其中包含 0 或多個 Element
物件。每個 Element
物件都代表一個字詞或類似字詞的實體,其中包含零或多個 Symbol
物件。每個 Symbol
物件都代表半形字元、數字或類似文字的實體。
您可以取得每個 TextBlock
、Line
、Element
和 Symbol
物件的文字,例如在區域中識別的文字、該區域的定界座標,以及旋轉資訊、可信度分數等許多屬性。
例如:
Kotlin
val resultText = result.text for (block in result.textBlocks) { val blockText = block.text val blockCornerPoints = block.cornerPoints val blockFrame = block.boundingBox for (line in block.lines) { val lineText = line.text val lineCornerPoints = line.cornerPoints val lineFrame = line.boundingBox for (element in line.elements) { val elementText = element.text val elementCornerPoints = element.cornerPoints val elementFrame = element.boundingBox } } }
Java
String resultText = result.getText(); for (Text.TextBlock block : result.getTextBlocks()) { String blockText = block.getText(); Point[] blockCornerPoints = block.getCornerPoints(); Rect blockFrame = block.getBoundingBox(); for (Text.Line line : block.getLines()) { String lineText = line.getText(); Point[] lineCornerPoints = line.getCornerPoints(); Rect lineFrame = line.getBoundingBox(); for (Text.Element element : line.getElements()) { String elementText = element.getText(); Point[] elementCornerPoints = element.getCornerPoints(); Rect elementFrame = element.getBoundingBox(); for (Text.Symbol symbol : element.getSymbols()) { String symbolText = symbol.getText(); Point[] symbolCornerPoints = symbol.getCornerPoints(); Rect symbolFrame = symbol.getBoundingBox(); } } } }
輸入圖片規範
-
為讓機器學習套件能準確辨識文字,輸入圖片必須包含足夠的像素資料。在理想情況下,每個字元至少要有 16x16 像素。一般來說,長度超過 24x24 像素的字元通常沒有準確性。
舉例來說,640x480 的圖片也許可以掃描佔用圖片完整寬度的名片。如要掃描印在紙張上的文件,你可能需要提供 720x1280 像素的圖片。
-
圖片品質不佳可能會影響文字辨識的準確度。如果未收到可接受的結果,請嘗試要求使用者重新拍攝圖片。
-
如果您要在即時應用程式中辨識文字,應考慮輸入圖片的整體尺寸。系統會加快處理小型圖片的速度。如要縮短延遲時間,請確保文字佔用了圖片的大小,並以較低的解析度拍攝圖片 (請注意上述的準確率規定)。詳情請參閱「改善效能的秘訣」。
改善成效的訣竅
- 如果使用
Camera
或camera2
API,請將呼叫傳送至偵測工具。偵測器執行時,如果偵測到新的影片畫面,請捨棄影格。如需範例,請參閱快速入門導覽課程範例應用程式中的VisionProcessorBase
類別。 - 如果您使用
CameraX
API,請務必將背壓策略設為預設值ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
。這只會傳送一張圖片進行分析。如果分析器忙碌時產生的更多圖片,系統會自動捨棄圖片,且不會排入佇列進行傳送。呼叫 ImageProxy.close() 關閉分析的圖片後,就會傳送下一張最新圖片。 - 如果您使用偵測工具的輸出內容在輸入圖片上疊加圖片,請先透過 ML Kit 取得結果,然後在單一步驟中顯示圖片和疊加層。每個輸入影格只會轉譯到一次顯示途徑。如需範例,請參閱快速入門導覽課程範例應用程式中的
CameraSourcePreview
和GraphicOverlay
類別。 - 如果您使用 Camera2 API,請擷取
ImageFormat.YUV_420_888
格式的圖片。如果您使用舊版 Camera API,請擷取ImageFormat.NV21
格式的圖片。 - 建議以較低解析度拍攝圖片。但請注意,這個 API 的圖片尺寸規定。