ML Kit का इस्तेमाल करके, इमेज या वीडियो में मौजूद टेक्स्ट की पहचान की जा सकती है. जैसे, सड़क के साइनबोर्ड पर मौजूद टेक्स्ट. इस सुविधा की मुख्य विशेषताएं ये हैं:
टेक्स्ट की पहचान करने वाला v2 एपीआई | |
---|---|
ब्यौरा | इमेज या वीडियो में मौजूद टेक्स्ट की पहचान करें, लैटिन, चाइनीज़, देवनागरी, जैपनीज़, कोरियन स्क्रिप्ट, और कई भाषाओं में उपलब्ध हैं. |
SDK टूल के नाम | GoogleMLKit/TextRecognition |
लागू करना | ऐसेट, बिल्ड के समय आपके ऐप्लिकेशन से स्टैटिक तौर पर लिंक होती हैं |
ऐप्लिकेशन के साइज़ पर असर | हर स्क्रिप्ट एसडीके के लिए करीब 38 एमबी |
परफ़ॉर्मेंस | लैटिन स्क्रिप्ट SDK टूल के लिए ज़्यादातर डिवाइसों पर रीयल-टाइम. हालांकि, अन्य डिवाइसों के लिए यह प्रोसेस धीमी है. |
इसे आज़माएं
- सैंपल वाले ऐप्लिकेशन को इस्तेमाल करके देखें, इस एपीआई के इस्तेमाल का एक उदाहरण देखें.
- कोडलैब (कोड बनाना सीखना).
शुरू करने से पहले
- अपनी Podfile में, ML Kit के ये पॉड शामिल करें:
# To recognize Latin script pod 'GoogleMLKit/TextRecognition', '15.5.0' # To recognize Chinese script pod 'GoogleMLKit/TextRecognitionChinese', '15.5.0' # To recognize Devanagari script pod 'GoogleMLKit/TextRecognitionDevanagari', '15.5.0' # To recognize Japanese script pod 'GoogleMLKit/TextRecognitionJapanese', '15.5.0' # To recognize Korean script pod 'GoogleMLKit/TextRecognitionKorean', '15.5.0'
- अपने प्रोजेक्ट के Pods इंस्टॉल या अपडेट करने के बाद,
.xcworkspace
का इस्तेमाल करके अपना Xcode प्रोजेक्ट खोलें. ML Kit, Xcode के 12.4 या इसके बाद के वर्शन पर काम करता है.
1. TextRecognizer
का इंस्टेंस बनाना
+textRecognizer(options:)
को कॉल करके, TextRecognizer
का इंस्टेंस बनाएं. इसके लिए, उस SDK टूल से जुड़े विकल्प दें जिसे आपने ऊपर डिपेंडेंसी के तौर पर बताया है:
Swift
// When using Latin script recognition SDK let latinOptions = TextRecognizerOptions() let latinTextRecognizer = TextRecognizer.textRecognizer(options:options) // When using Chinese script recognition SDK let chineseOptions = ChineseTextRecognizerOptions() let chineseTextRecognizer = TextRecognizer.textRecognizer(options:options) // When using Devanagari script recognition SDK let devanagariOptions = DevanagariTextRecognizerOptions() let devanagariTextRecognizer = TextRecognizer.textRecognizer(options:options) // When using Japanese script recognition SDK let japaneseOptions = JapaneseTextRecognizerOptions() let japaneseTextRecognizer = TextRecognizer.textRecognizer(options:options) // When using Korean script recognition SDK let koreanOptions = KoreanTextRecognizerOptions() let koreanTextRecognizer = TextRecognizer.textRecognizer(options:options)
Objective-C
// When using Latin script recognition SDK MLKTextRecognizerOptions *latinOptions = [[MLKTextRecognizerOptions alloc] init]; MLKTextRecognizer *latinTextRecognizer = [MLKTextRecognizer textRecognizerWithOptions:options]; // When using Chinese script recognition SDK MLKChineseTextRecognizerOptions *chineseOptions = [[MLKChineseTextRecognizerOptions alloc] init]; MLKTextRecognizer *chineseTextRecognizer = [MLKTextRecognizer textRecognizerWithOptions:options]; // When using Devanagari script recognition SDK MLKDevanagariTextRecognizerOptions *devanagariOptions = [[MLKDevanagariTextRecognizerOptions alloc] init]; MLKTextRecognizer *devanagariTextRecognizer = [MLKTextRecognizer textRecognizerWithOptions:options]; // When using Japanese script recognition SDK MLKJapaneseTextRecognizerOptions *japaneseOptions = [[MLKJapaneseTextRecognizerOptions alloc] init]; MLKTextRecognizer *japaneseTextRecognizer = [MLKTextRecognizer textRecognizerWithOptions:options]; // When using Korean script recognition SDK MLKKoreanTextRecognizerOptions *koreanOptions = [[MLKKoreanTextRecognizerOptions alloc] init]; MLKTextRecognizer *koreanTextRecognizer = [MLKTextRecognizer textRecognizerWithOptions:options];
2. इनपुट इमेज तैयार करें
इमेज कोUIImage
या CMSampleBufferRef
के तौर पर
TextRecognizer
की process(_:completion:)
विधि:
एक VisionImage
ऑब्जेक्ट को UIImage
या
CMSampleBuffer
.
अगर UIImage
का इस्तेमाल किया जाता है, तो यह तरीका अपनाएं:
UIImage
की मदद से,VisionImage
ऑब्जेक्ट बनाएं. पक्का करें कि आपने सही.orientation
डाला हो.Swift
let image = VisionImage(image: UIImage) visionImage.orientation = image.imageOrientation
Objective-C
MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image]; visionImage.orientation = image.imageOrientation;
CMSampleBuffer
का इस्तेमाल करने के लिए, यह तरीका अपनाएं:
-
CMSampleBuffer
में मौजूद इमेज डेटा का ओरिएंटेशन बताएं.इमेज का ओरिएंटेशन देखने के लिए:
Swift
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> UIImage.Orientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftMirrored : .right case .landscapeLeft: return cameraPosition == .front ? .downMirrored : .up case .portraitUpsideDown: return cameraPosition == .front ? .rightMirrored : .left case .landscapeRight: return cameraPosition == .front ? .upMirrored : .down case .faceDown, .faceUp, .unknown: return .up } }
Objective-C
- (UIImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored : UIImageOrientationRight; case UIDeviceOrientationLandscapeLeft: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored : UIImageOrientationUp; case UIDeviceOrientationPortraitUpsideDown: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored : UIImageOrientationLeft; case UIDeviceOrientationLandscapeRight: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored : UIImageOrientationDown; case UIDeviceOrientationUnknown: case UIDeviceOrientationFaceUp: case UIDeviceOrientationFaceDown: return UIImageOrientationUp; } }
CMSampleBuffer
ऑब्जेक्ट और ओरिएंटेशन का इस्तेमाल करके,VisionImage
ऑब्जेक्ट बनाएं:Swift
let image = VisionImage(buffer: sampleBuffer) image.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition)
Objective-C
MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer]; image.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
3. इमेज प्रोसेस करें
इसके बाद, process(_:completion:)
तरीके से इमेज पास करें:
Swift
textRecognizer.process(visionImage) { result, error in guard error == nil, let result = result else { // Error handling return } // Recognized text }
Objective-C
[textRecognizer processImage:image completion:^(MLKText *_Nullable result, NSError *_Nullable error) { if (error != nil || result == nil) { // Error handling return; } // Recognized text }];
4. पहचाने गए टेक्स्ट के ब्लॉक से टेक्स्ट निकालें
टेक्स्ट की पहचान करने की प्रोसेस पूरी होने पर, यह एक Text
ऑब्जेक्ट दिखाता है. Text
ऑब्जेक्ट में, इमेज में पहचाना गया पूरा टेक्स्ट और शून्य या उससे ज़्यादा TextBlock
ऑब्जेक्ट होते हैं.
हर TextBlock
टेक्स्ट के आयताकार ब्लॉक को दिखाता है, जो
शून्य या उससे ज़्यादा TextLine
ऑब्जेक्ट शामिल हैं. हर TextLine
ऑब्जेक्ट में शून्य या उससे ज़्यादा TextElement
ऑब्जेक्ट हैं,
जो शब्द और शब्द जैसी इकाइयां दिखाती हैं. जैसे, तारीख और संख्याएं.
हर TextBlock
, TextLine
, और
TextElement
ऑब्जेक्ट की पहचान करता है, तो
क्षेत्र और क्षेत्र की सीमा तय करने वाले निर्देशांक.
उदाहरण के लिए:
Swift
let resultText = result.text for block in result.blocks { let blockText = block.text let blockLanguages = block.recognizedLanguages let blockCornerPoints = block.cornerPoints let blockFrame = block.frame for line in block.lines { let lineText = line.text let lineLanguages = line.recognizedLanguages let lineCornerPoints = line.cornerPoints let lineFrame = line.frame for element in line.elements { let elementText = element.text let elementCornerPoints = element.cornerPoints let elementFrame = element.frame } } }
Objective-C
NSString *resultText = result.text; for (MLKTextBlock *block in result.blocks) { NSString *blockText = block.text; NSArray<MLKTextRecognizedLanguage *> *blockLanguages = block.recognizedLanguages; NSArray<NSValue *> *blockCornerPoints = block.cornerPoints; CGRect blockFrame = block.frame; for (MLKTextLine *line in block.lines) { NSString *lineText = line.text; NSArray<MLKTextRecognizedLanguage *> *lineLanguages = line.recognizedLanguages; NSArray<NSValue *> *lineCornerPoints = line.cornerPoints; CGRect lineFrame = line.frame; for (MLKTextElement *element in line.elements) { NSString *elementText = element.text; NSArray<NSValue *> *elementCornerPoints = element.cornerPoints; CGRect elementFrame = element.frame; } } }
इनपुट इमेज के लिए दिशा-निर्देश
-
एमएल किट टेक्स्ट की सटीक पहचान कर सके, इसके लिए इनपुट इमेज में ये चीज़ें होनी चाहिए ज़रूरत के मुताबिक पिक्सल डेटा से दिखाया जाने वाला टेक्स्ट. आम तौर पर, हर वर्ण कम से कम 16x16 पिक्सल का होना चाहिए. आम तौर पर, यह 24x24 पिक्सल से ज़्यादा बड़े वर्णों के लिए, सटीक होने का फ़ायदा देता है.
उदाहरण के लिए, 640x480 वाली इमेज से, ऐसे बिज़नेस कार्ड को स्कैन करने में मदद मिल सकती है जो इमेज की पूरी चौड़ाई में हो. लेटर साइज़ के पेपर पर प्रिंट किए गए दस्तावेज़ को स्कैन करने के लिए, 720x1280 पिक्सल की इमेज की ज़रूरत पड़ सकती है.
-
इमेज का फ़ोकस खराब होने पर, टेक्स्ट की पहचान करने की सटीकता पर असर पड़ सकता है. अगर आपको सही नतीजे नहीं मिल रहे हैं, तो उपयोगकर्ता से इमेज फिर से लेने के लिए कहें.
-
अगर आपको रीयल-टाइम ऐप्लिकेशन में टेक्स्ट की पहचान करनी है, तो आपको इनपुट इमेज के सभी डाइमेंशन को ध्यान में रखना चाहिए. इससे छोटा तो इमेज को तेज़ी से प्रोसेस किया जा सकता है. इंतज़ार का समय कम करने के लिए, पक्का करें कि टेक्स्ट, इमेज के ज़्यादा से ज़्यादा हिस्से पर हो. साथ ही, इमेज को कम रिज़ॉल्यूशन में कैप्चर करें. हालांकि, ऐसा करते समय ऊपर बताई गई सटीक जानकारी की ज़रूरी शर्तों को ध्यान में रखें. ज़्यादा जानकारी के लिए, परफ़ॉर्मेंस को बेहतर बनाने के बारे में सलाह देखें.
परफ़ॉर्मेंस को बेहतर बनाने के लिए सलाह
- वीडियो फ़्रेम प्रोसेस करने के लिए, डिटेक्टर के
results(in:)
सिंक्रोनस एपीआई का इस्तेमाल करें. कॉल करेंAVCaptureVideoDataOutputSampleBufferDelegate
काcaptureOutput(_, didOutput:from:)
फ़ंक्शन का इस्तेमाल, दिए गए वीडियो से सिंक्रोनस रूप से नतीजे पाने के लिए किया जाता है फ़्रेम. डिटेक्टर को कॉल को कम करने के लिए,AVCaptureVideoDataOutput
केalwaysDiscardsLateVideoFrames
कोtrue
के तौर पर सेट करें. अगर डिटेक्टर चालू होने के दौरान कोई नया वीडियो फ़्रेम उपलब्ध होता है, तो उसे हटा दिया जाएगा. - अगर ग्राफ़िक ओवरले करने के लिए डिटेक्टर के आउटपुट का इस्तेमाल किया जाता है, तो इनपुट इमेज को चुनने के बाद, पहले एमएल किट से नतीजा पाएं. इसके बाद, इमेज को रेंडर करें और ओवरले को एक ही चरण में पूरा करें. ऐसा करने पर, हर प्रोसेस किए गए इनपुट फ़्रेम के लिए, डिसप्ले प्लैटफ़ॉर्म पर सिर्फ़ एक बार रेंडर किया जाता है. उदाहरण के लिए, ML Kit के क्विकस्टार्ट सैंपल में updatePreviewOverlayViewWithLastFrame देखें.
- कम रिज़ॉल्यूशन वाली इमेज कैप्चर करें. हालांकि, इस एपीआई के लिए इमेज के डाइमेंशन से जुड़ी ज़रूरी शर्तों को भी ध्यान में रखें.
- परफ़ॉर्मेंस में गिरावट से बचने के लिए, एक साथ कई
TextRecognizer
इंस्टेंस न चलाएं. साथ ही, अलग-अलग स्क्रिप्ट विकल्पों का इस्तेमाल न करें.