คุณสามารถใช้ ML Kit เพื่อจดจำข้อความในรูปภาพหรือวิดีโอ เช่น ข้อความบนป้ายถนน ลักษณะหลักของฟีเจอร์นี้ ได้แก่
Text Recognition v2 API | |
---|---|
คำอธิบาย | จดจำข้อความในรูปภาพหรือวิดีโอ รองรับอักษรละติน จีน เดวานาการี ญี่ปุ่น และเกาหลี รวมถึงภาษาต่างๆ มากมาย |
ชื่อ SDK | GoogleMLKit/TextRecognition |
การใช้งาน | ชิ้นงานจะลิงก์กับแอปแบบคงที่ ณ เวลาที่สร้าง |
ผลกระทบต่อขนาดแอป | ประมาณ 38 MB ต่อ SDK สคริปต์ 1 รายการ |
ประสิทธิภาพ | เรียลไทม์ในอุปกรณ์ส่วนใหญ่สำหรับ SDK ตัวอักษรละติน และจะช้ากว่าในอุปกรณ์อื่นๆ |
ลองเลย
- ลองใช้แอปตัวอย่างเพื่อดูตัวอย่างการใช้งาน API นี้
- ลองใช้โค้ดด้วยตนเองด้วย Codelab
ก่อนเริ่มต้น
- รวมพ็อด ML Kit ต่อไปนี้ไว้ใน Podfile
# To recognize Latin script pod 'GoogleMLKit/TextRecognition', '7.0.0' # To recognize Chinese script pod 'GoogleMLKit/TextRecognitionChinese', '7.0.0' # To recognize Devanagari script pod 'GoogleMLKit/TextRecognitionDevanagari', '7.0.0' # To recognize Japanese script pod 'GoogleMLKit/TextRecognitionJapanese', '7.0.0' # To recognize Korean script pod 'GoogleMLKit/TextRecognitionKorean', '7.0.0'
- หลังจากติดตั้งหรืออัปเดต Pods ของโปรเจ็กต์แล้ว ให้เปิดโปรเจ็กต์ Xcode โดยใช้
.xcworkspace
ML Kit ใช้งานได้ใน Xcode เวอร์ชัน 12.4 ขึ้นไป
1. สร้างอินสแตนซ์ของ TextRecognizer
สร้างอินสแตนซ์ของ TextRecognizer
โดยการเรียกใช้ +textRecognizer(options:)
โดยส่งตัวเลือกที่เกี่ยวข้องกับ SDK ที่คุณประกาศไว้เป็นข้อกําหนดด้านบน
Swift
// When using Latin script recognition SDK let latinOptions = TextRecognizerOptions() let latinTextRecognizer = TextRecognizer.textRecognizer(options:options) // When using Chinese script recognition SDK let chineseOptions = ChineseTextRecognizerOptions() let chineseTextRecognizer = TextRecognizer.textRecognizer(options:options) // When using Devanagari script recognition SDK let devanagariOptions = DevanagariTextRecognizerOptions() let devanagariTextRecognizer = TextRecognizer.textRecognizer(options:options) // When using Japanese script recognition SDK let japaneseOptions = JapaneseTextRecognizerOptions() let japaneseTextRecognizer = TextRecognizer.textRecognizer(options:options) // When using Korean script recognition SDK let koreanOptions = KoreanTextRecognizerOptions() let koreanTextRecognizer = TextRecognizer.textRecognizer(options:options)
Objective-C
// When using Latin script recognition SDK MLKTextRecognizerOptions *latinOptions = [[MLKTextRecognizerOptions alloc] init]; MLKTextRecognizer *latinTextRecognizer = [MLKTextRecognizer textRecognizerWithOptions:options]; // When using Chinese script recognition SDK MLKChineseTextRecognizerOptions *chineseOptions = [[MLKChineseTextRecognizerOptions alloc] init]; MLKTextRecognizer *chineseTextRecognizer = [MLKTextRecognizer textRecognizerWithOptions:options]; // When using Devanagari script recognition SDK MLKDevanagariTextRecognizerOptions *devanagariOptions = [[MLKDevanagariTextRecognizerOptions alloc] init]; MLKTextRecognizer *devanagariTextRecognizer = [MLKTextRecognizer textRecognizerWithOptions:options]; // When using Japanese script recognition SDK MLKJapaneseTextRecognizerOptions *japaneseOptions = [[MLKJapaneseTextRecognizerOptions alloc] init]; MLKTextRecognizer *japaneseTextRecognizer = [MLKTextRecognizer textRecognizerWithOptions:options]; // When using Korean script recognition SDK MLKKoreanTextRecognizerOptions *koreanOptions = [[MLKKoreanTextRecognizerOptions alloc] init]; MLKTextRecognizer *koreanTextRecognizer = [MLKTextRecognizer textRecognizerWithOptions:options];
2. เตรียมรูปภาพอินพุต
ส่งรูปภาพเป็นUIImage
หรือ CMSampleBufferRef
ไปยังเมธอด process(_:completion:)
ของ TextRecognizer
ดังนี้
สร้างออบเจ็กต์ VisionImage
โดยใช้ UIImage
หรือ CMSampleBuffer
หากคุณใช้ UIImage
ให้ทำตามขั้นตอนต่อไปนี้
- สร้างออบเจ็กต์
VisionImage
ด้วยUIImage
ตรวจสอบว่าได้ระบุ.orientation
ที่ถูกต้องSwift
let image = VisionImage(image: UIImage) visionImage.orientation = image.imageOrientation
Objective-C
MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image]; visionImage.orientation = image.imageOrientation;
หากคุณใช้ CMSampleBuffer
ให้ทำตามขั้นตอนต่อไปนี้
-
ระบุการวางแนวของข้อมูลรูปภาพที่อยู่ใน
CMSampleBuffer
วิธีดูการวางแนวรูปภาพ
Swift
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> UIImage.Orientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftMirrored : .right case .landscapeLeft: return cameraPosition == .front ? .downMirrored : .up case .portraitUpsideDown: return cameraPosition == .front ? .rightMirrored : .left case .landscapeRight: return cameraPosition == .front ? .upMirrored : .down case .faceDown, .faceUp, .unknown: return .up } }
Objective-C
- (UIImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored : UIImageOrientationRight; case UIDeviceOrientationLandscapeLeft: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored : UIImageOrientationUp; case UIDeviceOrientationPortraitUpsideDown: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored : UIImageOrientationLeft; case UIDeviceOrientationLandscapeRight: return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored : UIImageOrientationDown; case UIDeviceOrientationUnknown: case UIDeviceOrientationFaceUp: case UIDeviceOrientationFaceDown: return UIImageOrientationUp; } }
- สร้างออบเจ็กต์
VisionImage
โดยใช้ออบเจ็กต์CMSampleBuffer
และการวางแนวต่อไปนี้Swift
let image = VisionImage(buffer: sampleBuffer) image.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition)
Objective-C
MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer]; image.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
3. ประมวลผลรูปภาพ
จากนั้นส่งรูปภาพไปยังเมธอด process(_:completion:)
ดังนี้
Swift
textRecognizer.process(visionImage) { result, error in guard error == nil, let result = result else { // Error handling return } // Recognized text }
Objective-C
[textRecognizer processImage:image completion:^(MLKText *_Nullable result, NSError *_Nullable error) { if (error != nil || result == nil) { // Error handling return; } // Recognized text }];
4. ดึงข้อความจากบล็อกข้อความที่ระบบจดจำได้
หากการจดจำข้อความสําเร็จ ระบบจะแสดงผลออบเจ็กต์ Text
ออบเจ็กต์ Text
มีข้อความแบบเต็มซึ่งระบบจดจำได้ในรูปภาพและออบเจ็กต์ TextBlock
อย่างน้อย 1 รายการ
TextBlock
แต่ละรายการแสดงบล็อกข้อความสี่เหลี่ยมผืนผ้าซึ่งมีออบเจ็กต์ TextLine
อย่างน้อย 1 รายการ ออบเจ็กต์ TextLine
แต่ละรายการประกอบด้วยออบเจ็กต์ TextElement
อย่างน้อย 1 รายการ ซึ่งแสดงถึงคำและเอนทิตีที่คล้ายกับคำ เช่น วันที่และตัวเลข
สําหรับออบเจ็กต์ TextBlock
, TextLine
และ TextElement
แต่ละรายการ คุณจะดูข้อความที่ระบบจดจําได้ในภูมิภาคและพิกัดขอบเขตของภูมิภาค
เช่น
Swift
let resultText = result.text for block in result.blocks { let blockText = block.text let blockLanguages = block.recognizedLanguages let blockCornerPoints = block.cornerPoints let blockFrame = block.frame for line in block.lines { let lineText = line.text let lineLanguages = line.recognizedLanguages let lineCornerPoints = line.cornerPoints let lineFrame = line.frame for element in line.elements { let elementText = element.text let elementCornerPoints = element.cornerPoints let elementFrame = element.frame } } }
Objective-C
NSString *resultText = result.text; for (MLKTextBlock *block in result.blocks) { NSString *blockText = block.text; NSArray<MLKTextRecognizedLanguage *> *blockLanguages = block.recognizedLanguages; NSArray<NSValue *> *blockCornerPoints = block.cornerPoints; CGRect blockFrame = block.frame; for (MLKTextLine *line in block.lines) { NSString *lineText = line.text; NSArray<MLKTextRecognizedLanguage *> *lineLanguages = line.recognizedLanguages; NSArray<NSValue *> *lineCornerPoints = line.cornerPoints; CGRect lineFrame = line.frame; for (MLKTextElement *element in line.elements) { NSString *elementText = element.text; NSArray<NSValue *> *elementCornerPoints = element.cornerPoints; CGRect elementFrame = element.frame; } } }
หลักเกณฑ์เกี่ยวกับรูปภาพอินพุต
-
รูปภาพอินพุตต้องมีข้อความที่แสดงโดยข้อมูลพิกเซลที่เพียงพอเพื่อให้ ML Kit จดจำข้อความได้อย่างแม่นยำ โดยอักขระแต่ละตัวควรมีขนาดอย่างน้อย 16x16 พิกเซล โดยทั่วไปแล้ว จะไม่มีข้อดีด้านความแม่นยำหากอักขระมีขนาดใหญ่กว่า 24x24 พิกเซล
ตัวอย่างเช่น รูปภาพขนาด 640x480 อาจเหมาะกับการสแกนนามบัตรที่กินพื้นที่เต็มความกว้างของรูปภาพ หากต้องการสแกนเอกสารที่พิมพ์บนกระดาษขนาดจดหมาย คุณอาจต้องใช้รูปภาพขนาด 720x1280 พิกเซล
-
ภาพที่โฟกัสไม่ดีอาจส่งผลต่อความแม่นยำในการจดจำข้อความ หากไม่ได้ผลลัพธ์ที่ยอมรับได้ ให้ลองขอให้ผู้ใช้ถ่ายภาพอีกครั้ง
-
หากจะจดจำข้อความในแอปพลิเคชันแบบเรียลไทม์ คุณควรพิจารณาขนาดโดยรวมของรูปภาพอินพุต ระบบจะประมวลผลรูปภาพขนาดเล็กได้เร็วขึ้น หากต้องการลดเวลาในการตอบสนอง ให้ตรวจสอบว่าข้อความมีพื้นที่ในรูปภาพมากที่สุดเท่าที่จะเป็นไปได้ และจับภาพด้วยความละเอียดที่ต่ำลง (โดยคำนึงถึงข้อกำหนดด้านความถูกต้องที่กล่าวถึงข้างต้น) ดูข้อมูลเพิ่มเติมได้ที่เคล็ดลับในการปรับปรุงประสิทธิภาพ
เคล็ดลับในการปรับปรุงประสิทธิภาพ
- สําหรับการประมวลผลเฟรมวิดีโอ ให้ใช้
results(in:)
synchronous API ของตัวตรวจจับ เรียกใช้วิธีนี้จากฟังก์ชันAVCaptureVideoDataOutputSampleBufferDelegate
'scaptureOutput(_, didOutput:from:)
เพื่อรับผลลัพธ์จากเฟรมวิดีโอที่ระบุแบบซิงค์ คงalwaysDiscardsLateVideoFrames
ของAVCaptureVideoDataOutput
เป็นtrue
เพื่อจำกัดการเรียกใช้เครื่องตรวจจับ หากเฟรมวิดีโอใหม่พร้อมใช้งานขณะที่ตัวตรวจจับทำงานอยู่ ระบบจะทิ้งเฟรมนั้น - หากคุณใช้เอาต์พุตของตัวตรวจจับเพื่อวางกราฟิกซ้อนทับบนรูปภาพอินพุต ให้รับผลลัพธ์จาก ML Kit ก่อน จากนั้นจึงแสดงผลรูปภาพและวางซ้อนในขั้นตอนเดียว ซึ่งจะทำให้คุณแสดงผลไปยังพื้นผิวการแสดงผลเพียงครั้งเดียวสำหรับเฟรมอินพุตที่ประมวลผลแต่ละเฟรม ดูตัวอย่างได้ที่ updatePreviewOverlayViewWithLastFrame ในตัวอย่างการเริ่มต้นใช้งานอย่างรวดเร็วของ ML Kit
- ลองถ่ายภาพด้วยความละเอียดต่ำลง อย่างไรก็ตาม โปรดคำนึงถึงข้อกำหนดด้านขนาดรูปภาพของ API นี้ด้วย
- อย่าเรียกใช้อินสแตนซ์
TextRecognizer
หลายรายการที่มีตัวเลือกสคริปต์ต่างกันพร้อมกันเพื่อหลีกเลี่ยงการลดประสิทธิภาพที่อาจเกิดขึ้น