Глобальная карта лесных/нелесных территорий (FNF) формируется путём классификации изображения SAR (коэффициента обратного рассеяния) в глобальной мозаике PALSAR-2/PALSAR SAR с разрешением 25 м таким образом, что пикселы с сильным и слабым обратным рассеянием определяются как «лес» и «нелес» соответственно. Под «лесом» здесь понимается естественный лес площадью более 0,5 га и лесным покровом более 10%. Это определение совпадает с определением Продовольственной и сельскохозяйственной организации ООН (ФАО). Поскольку обратное рассеяние радиолокационных сигналов от леса зависит от региона (климатической зоны), классификация «лес/нелес» проводится с использованием порогового значения обратного рассеяния, зависящего от региона. Точность классификации проверяется с помощью фотографий in situ и оптических спутниковых снимков высокого разрешения. Подробная информация доступна в описании набора данных поставщика.
Внимание:
Значения обратного рассеяния могут значительно различаться от трассы к трассе в лесных районах высоких широт. Это связано с изменением интенсивности обратного рассеяния, вызванным замерзанием деревьев зимой. Обратите внимание, что это может повлиять на классификацию лесных/нелесных зон.
Группы
Размер пикселя 25 метров
Группы
Имя
Мин.
Макс
Размер пикселя
Описание
fnf
1
3
метров
Классификация лесного/нелесного покрова
Таблица классов fnf
Ценить
Цвет
Описание
1
#006400
Лес
2
#feff99
Нелесные
3
#0000ff
Вода
Условия эксплуатации
Условия эксплуатации
JAXA сохраняет за собой право собственности на набор данных и не может гарантировать отсутствие каких-либо проблем, вызванных или потенциально вызванных использованием этих наборов данных. Любой желающий опубликовать результаты с использованием этих наборов данных должен чётко подтвердить право собственности на данные в публикации.
Цитаты
Цитаты:
Масанобу Симада, Такуя Ито, Такеши Мотоока, Манабу Ватанабэ, Сираиши Томохиро, Раджеш Тапа и Ричард Лукас, «Новые глобальные карты лесов и нелесов на основе данных ALOS PALSAR (2007–2010 гг.)», Дистанционное зондирование окружающей среды, 155, стр. 13–31, декабрь 2014 г. doi:10.1016/j.rse.2014.04.014.
Более новую версию этого набора данных с 4 классами за 2017–2020 годы можно найти в JAXA/ALOS/PALSAR/YEARLY/FNF4. Глобальная карта лесов/нелесов (FNF) создается путем классификации изображения SAR (коэффициента обратного рассеяния) в глобальной мозаике PALSAR-2/PALSAR SAR с разрешением 25 м, так что пиксели с сильным и слабым обратным рассеянием назначаются как «лес» и…
[null,null,[],[[["\u003cp\u003eThe JAXA/ALOS/PALSAR/YEARLY/FNF dataset provides a global forest/non-forest map at 25-meter resolution, classifying areas as forest, non-forest, or water based on SAR backscatter data.\u003c/p\u003e\n"],["\u003cp\u003eThis dataset covers the period from 2007 to 2018 and utilizes a region-dependent threshold for classification to account for variations in radar backscatter across different climate zones.\u003c/p\u003e\n"],["\u003cp\u003eUsers should be aware that backscatter values might differ significantly in high-latitude forest areas due to seasonal changes, potentially affecting the classification accuracy.\u003c/p\u003e\n"],["\u003cp\u003eA newer version of the dataset, JAXA/ALOS/PALSAR/YEARLY/FNF4, offers an updated classification with four classes for the years 2017-2020.\u003c/p\u003e\n"],["\u003cp\u003eJAXA retains ownership of the dataset, and users are required to acknowledge the data source when publishing any results derived from it.\u003c/p\u003e\n"]]],["The JAXA EORC provides a global forest/non-forest (FNF) map dataset from 2007 to 2018. This dataset uses 25m resolution PALSAR-2/PALSAR SAR mosaic images, classifying pixels based on backscatter strength into \"forest,\" \"non-forest,\" and \"water.\" Forest is defined as natural forest with an area over 0.5 ha and cover exceeding 10%. The dataset is accessible via Google Earth Engine using the provided snippet and is classified with an accuracy determined through in-situ and high-resolution optical images.\n"],null,["# Global 3-class PALSAR-2/PALSAR Forest/Non-Forest Map\n\nDataset Availability\n: 2007-01-01T00:00:00Z--2018-01-01T00:00:00Z\n\nDataset Provider\n:\n\n\n [JAXA EORC](https://www.eorc.jaxa.jp/ALOS/en/dataset/fnf_e.htm)\n\nTags\n:\n[alos](/earth-engine/datasets/tags/alos) [alos2](/earth-engine/datasets/tags/alos2) [classification](/earth-engine/datasets/tags/classification) [eroc](/earth-engine/datasets/tags/eroc) [forest](/earth-engine/datasets/tags/forest) [forest-biomass](/earth-engine/datasets/tags/forest-biomass) [jaxa](/earth-engine/datasets/tags/jaxa) [landcover](/earth-engine/datasets/tags/landcover) [palsar](/earth-engine/datasets/tags/palsar) [palsar2](/earth-engine/datasets/tags/palsar2) [sar](/earth-engine/datasets/tags/sar) \n\n#### Description\n\nA newer version of this dataset with 4 classes for 2017-2020 can be found in\n[JAXA/ALOS/PALSAR/YEARLY/FNF4](/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_FNF4)\n\nThe global forest/non-forest map (FNF) is generated by\nclassifying the SAR image (backscattering coefficient) in the\nglobal 25m resolution PALSAR-2/PALSAR SAR mosaic so that strong and\nlow backscatter pixels are assigned as \"forest\" and \"non-forest\",\nrespectively. Here, \"forest\" is defined as the natural forest\nwith the area larger than 0.5 ha and forest cover over 10%. This\ndefinition is the same as the Food and Agriculture Organization\n(FAO) definition. Since the radar backscatter from the forest\ndepends on the region (climate zone), the classification of\nForest/Non-Forest is conducted by using a region-dependent\nthreshold of backscatter. The classification accuracy is\nchecked by using in-situ photos and high-resolution optical\nsatellite images. Detailed information is available in the provider's\n[Dataset Description](https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/DatasetDescription_PALSAR2_Mosaic_FNF_revE.pdf).\n\nAttention:\n\n- Backscatter values may vary significantly from path to path over high latitude forest areas. This is due to the change of backscattering intensity caused by freezing trees in winter. Please note that this may affect the classification of forest/non-forest.\n\n### Bands\n\n\n**Pixel Size**\n\n25 meters\n\n**Bands**\n\n| Name | Min | Max | Pixel Size | Description |\n|-------|-----|-----|------------|--------------------------------------------|\n| `fnf` | 1 | 3 | meters | Forest/Non-Forest landcover classification |\n\n**fnf Class Table**\n\n| Value | Color | Description |\n|-------|---------|-------------|\n| 1 | #006400 | Forest |\n| 2 | #feff99 | Non-Forest |\n| 3 | #0000ff | Water |\n\n### Terms of Use\n\n**Terms of Use**\n\nJAXA retains ownership of the dataset and cannot guarantee\nany problem caused by or possibly caused by using the datasets.\nAnyone wishing to publish any results using the datasets should\nclearly acknowledge the ownership of the data in the publication.\n\n### Citations\n\nCitations:\n\n- Masanobu Shimada, Takuya Itoh, Takeshi Motooka, Manabu Watanabe,\n Shiraishi Tomohiro, Rajesh Thapa, and Richard Lucas, \"New Global\n Forest/Non-forest Maps from ALOS PALSAR Data (2007-2010)\", Remote Sensing\n of Environment, 155, pp. 13-31, December 2014.\n [doi:10.1016/j.rse.2014.04.014.](https://doi.org/10.1016/j.rse.2014.04.014)\n\n### Explore with Earth Engine\n\n| **Important:** Earth Engine is a platform for petabyte-scale scientific analysis and visualization of geospatial datasets, both for public benefit and for business and government users. Earth Engine is free to use for research, education, and nonprofit use. To get started, please [register for Earth Engine access.](https://console.cloud.google.com/earth-engine)\n\n### Code Editor (JavaScript)\n\n```javascript\nvar dataset = ee.ImageCollection('JAXA/ALOS/PALSAR/YEARLY/FNF')\n .filterDate('2017-01-01', '2017-12-31');\nvar forestNonForest = dataset.select('fnf');\nvar forestNonForestVis = {\n min: 1,\n max: 3,\n palette: ['006400', 'feff99', '0000ff'],\n};\nMap.setCenter(136.85, 37.37, 4);\nMap.addLayer(forestNonForest, forestNonForestVis, 'Forest/Non-Forest');\n```\n[Open in Code Editor](https://code.earthengine.google.com/?scriptPath=Examples:Datasets/JAXA/JAXA_ALOS_PALSAR_YEARLY_FNF) \n[Global 3-class PALSAR-2/PALSAR Forest/Non-Forest Map](/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_FNF) \nA newer version of this dataset with 4 classes for 2017-2020 can be found in JAXA/ALOS/PALSAR/YEARLY/FNF4 The global forest/non-forest map (FNF) is generated by classifying the SAR image (backscattering coefficient) in the global 25m resolution PALSAR-2/PALSAR SAR mosaic so that strong and low backscatter pixels are assigned as \"forest\" and ... \nJAXA/ALOS/PALSAR/YEARLY/FNF, alos,alos2,classification,eroc,forest,forest-biomass,jaxa,landcover,palsar,palsar2,sar \n2007-01-01T00:00:00Z/2018-01-01T00:00:00Z \n-90 -180 90 180 \nGoogle Earth Engine \nhttps://developers.google.com/earth-engine/datasets\n\n- [](https://doi.org/https://www.eorc.jaxa.jp/ALOS/en/dataset/fnf_e.htm)\n- [](https://doi.org/https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_FNF)"]]