Abbildung 1. Nicht lineares Klassifizierungsproblem. Eine lineare Funktion kann
die blauen von den orangefarbenen Punkten.
„Nicht linear“ bedeutet, dass Sie ein Label mit einem
der Form \(b + w_1x_1 + w_2x_2\). Mit anderen Worten: Die „Entscheidungsfläche“ ist keine Linie.
Wenn wir jedoch eine Merkmalskreuzung für die Merkmale x1 und x2 durchführen, können wir die nichtlineare Beziehung zwischen den beiden Merkmalen mit einem linearen Modell darstellen:
$b + w_1x_1 + w_2x_2 + w_3x_3$, wobei x3 die Merkmalskreuzung zwischen x1 und x2 ist:
Abbildung 2. Durch das Hinzufügen des Feature-Kreuzprodukts x1x2 kann das lineare Modell eine hyperbolische Form lernen, die die blauen Punkte von den orangefarbenen trennt.
Betrachten Sie nun den folgenden Datensatz:
Abbildung 3: Ein schwierigeres nichtlineares Klassifizierungsproblem.
Vielleicht erinnern Sie sich auch aus den Übungsreihen zu Funktionsverknüpfungen.
dass die Bestimmung des richtigen Merkmals sich überschneidet, um ein lineares Modell an diese Daten anzupassen.
etwas mehr Aufwand und Experimentierfreude.
Aber was wäre, wenn Sie all diese Tests nicht selbst durchführen müssten?
neuronale Netzwerke gehören zu einer Familie
von Modellarchitekturen,
die darauf ausgelegt sind,
nonlinear
Muster in Daten. Während des Trainings eines neuronalen Netzes lernt das Modell automatisch die optimalen Feature-Kreuzungen, die auf den Eingabedaten ausgeführt werden müssen, um den Verlust zu minimieren.
In den folgenden Abschnitten sehen wir uns genauer an, wie sie funktionieren.
[null,null,["Zuletzt aktualisiert: 2025-07-27 (UTC)."],[[["\u003cp\u003eThis module explores neural networks, a model architecture designed to automatically identify nonlinear patterns in data, eliminating the need for manual feature cross experimentation.\u003c/p\u003e\n"],["\u003cp\u003eYou will learn the fundamental components of a deep neural network, including nodes, hidden layers, and activation functions, and how they contribute to prediction.\u003c/p\u003e\n"],["\u003cp\u003eThe module covers the training process of neural networks, using the backpropagation algorithm to optimize predictions and minimize loss.\u003c/p\u003e\n"],["\u003cp\u003eAdditionally, you will gain insights into how neural networks handle multi-class classification problems using one-vs.-all and one-vs.-one approaches.\u003c/p\u003e\n"],["\u003cp\u003eThis module builds on prior knowledge of machine learning concepts such as linear and logistic regression, classification, and working with numerical and categorical data.\u003c/p\u003e\n"]]],[],null,["# Neural networks\n\n| **Estimated module length:** 75 minutes\n| **Learning objectives**\n|\n| - Explain the motivation for building neural networks, and the use cases they address.\n| - Define and explain the function of the key components of a deep neural network architecture:\n| - **[Nodes](/machine-learning/glossary#node-neural-network)**\n| - **[Hidden layers](/machine-learning/glossary#hidden_layer)**\n| - **[Activation functions](/machine-learning/glossary#activation_function)**\n| - Develop intuition around how neural network predictions are made, by stepping through the inference process.\n| - Build a high-level intuition of how neural networks are trained, using the backpropagation algorithm.\n| - Explain how neural networks can be used to perform two types of multi-class classification: one-vs.-all and one-vs.-one.\n| **Prerequisites:**\n|\n| This module assumes you are familiar with the concepts covered in the\n| following modules:\n|\n| - [Introduction to Machine Learning](/machine-learning/intro-to-ml)\n| - [Linear regression](/machine-learning/crash-course/linear-regression)\n| - [Logistic regression](/machine-learning/crash-course/logistic-regression)\n| - [Classification](/machine-learning/crash-course/classification)\n| - [Working with numerical data](/machine-learning/crash-course/numerical-data)\n| - [Working with categorical data](/machine-learning/crash-course/categorical-data)\n| - [Datasets, generalization, and overfitting](/machine-learning/crash-course/overfitting)\n\nYou may recall from the\n[Feature cross exercises](/machine-learning/crash-course/categorical-data/feature-cross-exercises)\nin the [Categorical data module](/machine-learning/crash-course/categorical-data),\nthat the following classification problem is nonlinear:\n**Figure 1.** Nonlinear classification problem. A linear function cannot cleanly separate all the blue dots from the orange dots.\n\n\"Nonlinear\" means that you can't accurately predict a label with a\nmodel of the form \\\\(b + w_1x_1 + w_2x_2\\\\). In other words, the\n\"decision surface\" is not a line.\n\nHowever, if we perform a feature cross on our features $x_1$ and $x_2$, we can\nthen represent the nonlinear relationship between the two features using a\n[**linear model**](/machine-learning/glossary#linear-model):\n$b + w_1x_1 + w_2x_2 + w_3x_3$ where $x_3$ is the feature cross between\n$x_1$ and $x_2$:\n**Figure 2.** By adding the feature cross *x* ~1~*x* ~2~, the linear model can learn a hyperbolic shape that separates the blue dots from the orange dots.\n\nNow consider the following dataset:\n**Figure 3.** A more difficult nonlinear classification problem.\n\nYou may also recall from the [Feature cross exercises](/machine-learning/crash-course/categorical-data/feature-cross-exercises)\nthat determining the correct feature crosses to fit a linear model to this data\ntook a bit more effort and experimentation.\n\nBut what if you didn't have to do all that experimentation yourself?\n[**Neural networks**](/machine-learning/glossary#neural_network) are a family\nof model architectures designed to find\n[**nonlinear**](/machine-learning/glossary#nonlinear)\npatterns in data. During training of a neural network, the\n[**model**](/machine-learning/glossary#model) automatically\nlearns the optimal feature crosses to perform on the input data to minimize\nloss.\n\nIn the following sections, we'll take a closer look at how neural networks work.\n| **Key terms:**\n|\n| - [Activation function](/machine-learning/glossary#activation_function)\n| - [Hidden layer](/machine-learning/glossary#hidden_layer)\n| - [Linear model](/machine-learning/glossary#linear-model)\n| - [Model](/machine-learning/glossary#model)\n| - [Neural network](/machine-learning/glossary#neural_network)\n| - [Nodes](/machine-learning/glossary#node-neural-network)\n- [Nonlinear](/machine-learning/glossary#nonlinear) \n[Help Center](https://support.google.com/machinelearningeducation)"]]