您可以使用机器学习套件识别和解码条形码。
特征 | 未捆绑 | 捆绑 |
---|---|---|
实现 | 模型通过 Google Play 服务动态下载。 | 模型在构建时静态关联到您的应用。 |
应用大小 | 大小增加约 200 KB。 | 大小增加约 2.4 MB。 |
初始化时间 | 首次使用前可能需要等待模型下载。 | 模型可立即使用。 |
试试看
- 试用示例应用,查看此 API 的示例用法。
- 如需了解此 API 的端到端实现,请参阅 Material Design 展示应用。
准备工作
请务必在您的项目级
build.gradle
文件中的buildscript
和allprojects
部分添加 Google 的 Maven 代码库。将 Android 版机器学习套件库的依赖项添加到您的模块的应用级 Gradle 文件(通常为
app/build.gradle
)。根据您的需求选择以下依赖项之一:要将模型与您的应用捆绑在一起,请执行以下操作:
dependencies { // ... // Use this dependency to bundle the model with your app implementation 'com.google.mlkit:barcode-scanning:17.0.3' }
如需在 Google Play 服务中使用模型,请按以下步骤操作:
dependencies { // ... // Use this dependency to use the dynamically downloaded model in Google Play Services implementation 'com.google.android.gms:play-services-mlkit-barcode-scanning:18.1.0' }
如果您选择在 Google Play 服务中使用模型,您可以将应用配置为在您的应用从 Play 商店安装后自动将其下载到设备上。为此,请将以下声明添加到应用的
AndroidManifest.xml
文件中:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="barcode" > <!-- To use multiple models: android:value="barcode,model2,model3" --> </application>
您还可以通过 Google Play 服务 ModuleInstallClient API 明确检查模型可用性并请求下载。
如果您未启用在安装时下载模型的请求或请求明确下载模型,则系统会在您首次运行扫描程序时下载模型。您在下载完毕之前提出的请求不会产生任何结果。
输入图片准则
-
为了使机器学习套件准确读取条形码,输入图片必须包含由足够像素数据表示的条形码。
由于许多条形码都支持可变大小的载荷,因此具体的像素数据要求取决于条形码的类型及其中编码的数据量。一般来说,条形码的最小单位应至少为 2 像素宽,对于二维代码,应为至少 2 像素宽。
例如,EAN-13 条形码由宽度为 1、2、3 或 4 个单元的柱形和空格组成,因此,理想情况下,EAN-13 条形码图片的宽度和宽度至少为 2、4、6 和 8 像素。由于一个 EAN-13 条形码的总宽度为 95 个单元,因此该条形码的宽度应至少为 190 像素。
更密集的格式(如 PDF417)需要更大的像素尺寸,这样机器学习套件才能可靠地读取。例如,一个 PDF417 代码在一行中最多可包含 34 个 17 单元宽的“单词”,理想情况下其宽度至少为 1156 像素。
-
图片聚焦不良会影响扫描准确性。如果您的应用未获得可接受的结果,请让用户重新捕获图片。
-
对于典型应用,建议提供分辨率更高的图片,例如 1280x720 或 1920x1080,这样可在距离摄像头较远的位置扫描条形码。
但是,在延迟时间至关重要的应用中,您可以通过以较低分辨率捕获图片来提高性能,但要求条形码构成输入图片的主要部分。另请参阅提高实时性能的相关提示。
1. 配置条形码扫描器
如果您知道自己要读取哪些条形码格式,则可以将条形码检测器配置为仅检测这些格式,从而加快条形码检测器的速度。例如,如需仅检测 Aztec 码和 QR 码,请按照以下示例构建 BarcodeScannerOptions
对象:
Kotlin
val options = BarcodeScannerOptions.Builder() .setBarcodeFormats( Barcode.FORMAT_QR_CODE, Barcode.FORMAT_AZTEC) .build()
Java
BarcodeScannerOptions options = new BarcodeScannerOptions.Builder() .setBarcodeFormats( Barcode.FORMAT_QR_CODE, Barcode.FORMAT_AZTEC) .build();
支持以下格式:
- 代码 128 (
FORMAT_CODE_128
) - 代码 39 (
FORMAT_CODE_39
) - 代码 93 (
FORMAT_CODE_93
) - 科达巴 (
FORMAT_CODABAR
) - EAN-13(
FORMAT_EAN_13
) - EAN-8(
FORMAT_EAN_8
) - ITF(
FORMAT_ITF
) - UPC-A(
FORMAT_UPC_A
) - UPC-E(
FORMAT_UPC_E
) - 二维码 (
FORMAT_QR_CODE
) - PDF417(
FORMAT_PDF417
) - 阿兹特克语 (
FORMAT_AZTEC
) - 数据矩阵 (
FORMAT_DATA_MATRIX
)
2. 准备输入图片
如需识别图片中的条形码,请基于设备上的以下资源创建一个InputImage
对象:Bitmap
、media.Image
、ByteBuffer
、字节数组或文件。然后,将 InputImage
对象传递给 BarcodeScanner
的 process
方法。
您可以根据不同来源创建 InputImage
对象,下文逐一介绍了该对象。
使用 media.Image
如需基于 media.Image
对象创建 InputImage
对象(例如从设备的相机捕获图片时),请将 media.Image
对象和图片的旋转角度传递给 InputImage.fromMediaImage()
。
如果您使用 CameraX 库,OnImageCapturedListener
和 ImageAnalysis.Analyzer
类会为您计算旋转角度值。
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
如果您不使用可提供图片旋转角度的相机库,则可以根据设备的旋转角度和设备中相机传感器的朝向来计算旋转角度:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
然后,将 media.Image
对象及其旋转角度值传递给 InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
使用文件 URI
如需基于文件 URI 创建 InputImage
对象,请将应用上下文和文件 URI 传递给 InputImage.fromFilePath()
。如果您使用 ACTION_GET_CONTENT
intent 提示用户从图库应用中选择图片,则这一操作非常有用。
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
使用 ByteBuffer
或 ByteArray
如需基于 ByteBuffer
或 ByteArray
创建 InputImage
对象,请首先按之前针对 media.Image
输入的说明计算图片旋转角度。然后,使用缓冲区或数组以及图片的高度、宽度、颜色编码格式和旋转角度创建 InputImage
对象:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
使用 Bitmap
如需基于 Bitmap
对象创建 InputImage
对象,请进行以下声明:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
图片由 Bitmap
对象以及旋转角度表示。
3. 获取 BarcodeScanner 实例
Kotlin
val scanner = BarcodeScanning.getClient() // Or, to specify the formats to recognize: // val scanner = BarcodeScanning.getClient(options)
Java
BarcodeScanner scanner = BarcodeScanning.getClient(); // Or, to specify the formats to recognize: // BarcodeScanner scanner = BarcodeScanning.getClient(options);
4. 处理图片
将图片传递给process
方法:
Kotlin
val result = scanner.process(image) .addOnSuccessListener { barcodes -> // Task completed successfully // ... } .addOnFailureListener { // Task failed with an exception // ... }
Java
Task<List<Barcode>> result = scanner.process(image) .addOnSuccessListener(new OnSuccessListener<List<Barcode>>() { @Override public void onSuccess(List<Barcode> barcodes) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
5. 从条形码中获取信息
如果条形码识别操作成功,系统会向成功监听器传递一组Barcode
对象。每个 Barcode
对象代表一个在图片中检测到的条形码。对于每个条形码,您可以获取它在输入图片中的边界坐标以及由条形码编码的原始数据。此外,如果条形码扫描器能够确定条形码编码的数据类型,您还可以获取包含已解析数据的对象。
例如:
Kotlin
for (barcode in barcodes) { val bounds = barcode.boundingBox val corners = barcode.cornerPoints val rawValue = barcode.rawValue val valueType = barcode.valueType // See API reference for complete list of supported types when (valueType) { Barcode.TYPE_WIFI -> { val ssid = barcode.wifi!!.ssid val password = barcode.wifi!!.password val type = barcode.wifi!!.encryptionType } Barcode.TYPE_URL -> { val title = barcode.url!!.title val url = barcode.url!!.url } } }
Java
for (Barcode barcode: barcodes) { Rect bounds = barcode.getBoundingBox(); Point[] corners = barcode.getCornerPoints(); String rawValue = barcode.getRawValue(); int valueType = barcode.getValueType(); // See API reference for complete list of supported types switch (valueType) { case Barcode.TYPE_WIFI: String ssid = barcode.getWifi().getSsid(); String password = barcode.getWifi().getPassword(); int type = barcode.getWifi().getEncryptionType(); break; case Barcode.TYPE_URL: String title = barcode.getUrl().getTitle(); String url = barcode.getUrl().getUrl(); break; } }
实时性能提升技巧
如果要在实时应用中扫描条形码,请遵循以下准则以实现最佳帧速率:
-
请勿以相机的原始分辨率捕获输入内容。在某些设备上,以原生分辨率捕获输入会生成非常大(超过 1000 万像素)的图片,导致延迟时间非常短,而对准确性没有任何益处。相反,应该仅从相机中请求检测条形码所需的尺寸(通常不超过 200 万像素)。
如果扫描速度很重要,您可以进一步降低图片拍摄分辨率。不过,请注意,上文所述的最小条形码大小要求。
如果您尝试从一系列流式传输视频帧中识别条形码,识别器可能会在不同帧之间产生不同的结果。您应该等到获得相同值连续的一系列数据,确信自己会返回良好的结果。
ITF 和 CODE-39 不支持校验和数字。
- 如果您使用
Camera
或camera2
API,请限制对检测器的调用。如果在检测器运行时有新的视频帧可用,请丢弃该帧。如需查看示例,请参阅快速入门示例应用中的VisionProcessorBase
类。 - 如果您使用
CameraX
API,请确保将 Backpressure 策略设置为其默认值ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
。 这样可以确保一次只会投放一张图片进行分析。如果分析器在繁忙时生成更多图片,这些图片会自动丢弃,不会排队等待传送。通过调用 ImageProxy.close() 关闭要分析的图片后,系统会交付下一个最新图片。 - 如果要将检测器的输出作为图形叠加在输入图片上,请先从机器学习套件获取结果,然后在一个步骤中完成图片的呈现和叠加。对于每个输入帧,这仅会在显示表面呈现一次。如需查看示例,请参阅快速入门示例应用中的
CameraSourcePreview
和GraphicOverlay
类。 - 如果您使用 Camera2 API,请以
ImageFormat.YUV_420_888
格式捕获图片。如果您使用旧版 Camera API,请以ImageFormat.NV21
格式捕获图片。