You can use ML Kit to recognize and decode barcodes.
Feature | Unbundled | Bundled |
---|---|---|
Implementation | Model is dynamically downloaded via Google Play Services. | Model is statically linked to your app at build time. |
App size | About 200 KB size increase. | About 2.4 MB size increase. |
Initialization time | Might have to wait for model to download before first use. | Model is available immediately. |
Try it out
- Play around with the sample app to see an example usage of this API.
- See the Material Design showcase app for an end-to-end implementation of this API.
Before you begin
In your project-level
build.gradle
file, make sure to include Google's Maven repository in both yourbuildscript
andallprojects
sections.Add the dependencies for the ML Kit Android libraries to your module's app-level gradle file, which is usually
app/build.gradle
. Choose one of the following dependencies based on your needs:For bundling the model with your app:
dependencies { // ... // Use this dependency to bundle the model with your app implementation 'com.google.mlkit:barcode-scanning:17.3.0' }
For using the model in Google Play Services:
dependencies { // ... // Use this dependency to use the dynamically downloaded model in Google Play Services implementation 'com.google.android.gms:play-services-mlkit-barcode-scanning:18.3.1' }
If you choose to use the model in Google Play Services, you can configure your app to automatically download the model to the device after your app is installed from the Play Store. To do so, add the following declaration to your app's
AndroidManifest.xml
file:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="barcode" > <!-- To use multiple models: android:value="barcode,model2,model3" --> </application>
You can also explicitly check the model availability and request download through Google Play services ModuleInstallClient API.
If you don't enable install-time model downloads or request explicit download, the model is downloaded the first time you run the scanner. Requests you make before the download has completed produce no results.
Input image guidelines
-
For ML Kit to accurately read barcodes, input images must contain barcodes that are represented by sufficient pixel data.
The specific pixel data requirements are dependent on both the type of barcode and the amount of data that's encoded in it, since many barcodes support a variable size payload. In general, the smallest meaningful unit of the barcode should be at least 2 pixels wide, and for 2-dimensional codes, 2 pixels tall.
For example, EAN-13 barcodes are made up of bars and spaces that are 1, 2, 3, or 4 units wide, so an EAN-13 barcode image ideally has bars and spaces that are at least 2, 4, 6, and 8 pixels wide. Because an EAN-13 barcode is 95 units wide in total, the barcode should be at least 190 pixels wide.
Denser formats, such as PDF417, need greater pixel dimensions for ML Kit to reliably read them. For example, a PDF417 code can have up to 34 17-unit wide "words" in a single row, which would ideally be at least 1156 pixels wide.
-
Poor image focus can impact scanning accuracy. If your app isn't getting acceptable results, ask the user to recapture the image.
-
For typical applications, it's recommended to provide a higher resolution image, such as 1280x720 or 1920x1080, which makes barcodes scannable from a larger distance away from the camera.
However, in applications where latency is critical, you can improve performance by capturing images at a lower resolution, but requiring that the barcode make up the majority of the input image. Also see Tips to improve real-time performance.
1. Configure the barcode scanner
If you know which barcode formats you expect to read, you can improve the speed of the barcode detector by configuring it to only detect those formats.For example, to detect only Aztec code and QR codes, build a
BarcodeScannerOptions
object as in the following example:
Kotlin
val options = BarcodeScannerOptions.Builder() .setBarcodeFormats( Barcode.FORMAT_QR_CODE, Barcode.FORMAT_AZTEC) .build()
Java
BarcodeScannerOptions options = new BarcodeScannerOptions.Builder() .setBarcodeFormats( Barcode.FORMAT_QR_CODE, Barcode.FORMAT_AZTEC) .build();
The following formats are supported:
- Code 128 (
FORMAT_CODE_128
) - Code 39 (
FORMAT_CODE_39
) - Code 93 (
FORMAT_CODE_93
) - Codabar (
FORMAT_CODABAR
) - EAN-13 (
FORMAT_EAN_13
) - EAN-8 (
FORMAT_EAN_8
) - ITF (
FORMAT_ITF
) - UPC-A (
FORMAT_UPC_A
) - UPC-E (
FORMAT_UPC_E
) - QR Code (
FORMAT_QR_CODE
) - PDF417 (
FORMAT_PDF417
) - Aztec (
FORMAT_AZTEC
) - Data Matrix (
FORMAT_DATA_MATRIX
)
Starting from bundled model 17.1.0 and unbundled model 18.2.0, you can also call
enableAllPotentialBarcodes()
to return all potential barcodes even if they
cannot be decoded. This can be used to facilitate further detection, for example
by zooming in the camera to get a clearer image of any barcode in the returned
bounding box.
Kotlin
val options = BarcodeScannerOptions.Builder() .setBarcodeFormats(...) .enableAllPotentialBarcodes() // Optional .build()
Java
BarcodeScannerOptions options = new BarcodeScannerOptions.Builder() .setBarcodeFormats(...) .enableAllPotentialBarcodes() // Optional .build();
Further on, starting from bundled library 17.2.0 and unbundled library 18.3.0, a new feature called auto-zoom has been introduced to further enhance the barcode scanning experience. With this feature enabled, the app is notified when all barcodes within the view are too distant for decoding. As a result, the app can effortlessly adjust the camera's zoom ratio to the recommended setting provided by the library, ensuring optimal focus and readability. This feature will significantly enhance the accuracy and success rate of barcode scanning, making it easier for apps to capture information precisely.
To enable auto-zooming and customize the experience, you can utilize the
setZoomSuggestionOptions()
method along with your
own ZoomCallback
handler and desired maximum zoom
ratio, as demonstrated in the code below.
Kotlin
val options = BarcodeScannerOptions.Builder() .setBarcodeFormats(...) .setZoomSuggestionOptions( new ZoomSuggestionOptions.Builder(zoomCallback) .setMaxSupportedZoomRatio(maxSupportedZoomRatio) .build()) // Optional .build()
Java
BarcodeScannerOptions options = new BarcodeScannerOptions.Builder() .setBarcodeFormats(...) .setZoomSuggestionOptions( new ZoomSuggestionOptions.Builder(zoomCallback) .setMaxSupportedZoomRatio(maxSupportedZoomRatio) .build()) // Optional .build();
zoomCallback
is required to be provided to handle whenever the library
suggests a zoom should be performed and this callback will always be called on
the main thread.
The following code snippet shows an example of defining a simple callback.
Kotlin
fun setZoom(ZoomRatio: Float): Boolean { if (camera.isClosed()) return false camera.getCameraControl().setZoomRatio(zoomRatio) return true }
Java
boolean setZoom(float zoomRatio) { if (camera.isClosed()) { return false; } camera.getCameraControl().setZoomRatio(zoomRatio); return true; }
maxSupportedZoomRatio
is related to the camera hardware, and different camera
libraries have different ways to fetch it (see the javadoc of the setter
method). In case this is not provided, an
unbounded zoom ratio might be produced by the library which might not be
supported. Refer to the
setMaxSupportedZoomRatio()
method
introduction to see how to get the max supported zoom ratio with different
Camera libraries.
When auto-zooming is enabled and no barcodes are successfully decoded within
the view, BarcodeScanner
triggers your zoomCallback
with the requested
zoomRatio
. If the callback correctly adjusts the camera to this zoomRatio
,
it is highly probable that the most centered potential barcode will be decoded
and returned.
A barcode may remain undecodable even after a successful zoom-in. In such cases,
BarcodeScanner
may either invoke the callback for another round of zoom-in
until the maxSupportedZoomRatio
is reached, or provide an empty list (or a
list containing potential barcodes that were not decoded, if
enableAllPotentialBarcodes()
was called) to the OnSuccessListener
(which
will be defined in step 4. Process the image).
2. Prepare the input image
To recognize barcodes in an image, create anInputImage
object
from either a Bitmap
, media.Image
, ByteBuffer
, byte array, or a file on
the device. Then, pass the InputImage
object to the
BarcodeScanner
's process
method.
You can create an InputImage
object from different sources, each is explained below.
Using a media.Image
To create an InputImage
object from a media.Image
object, such as when you capture an image from a
device's camera, pass the media.Image
object and the image's
rotation to InputImage.fromMediaImage()
.
If you use the
CameraX library, the OnImageCapturedListener
and
ImageAnalysis.Analyzer
classes calculate the rotation value
for you.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
If you don't use a camera library that gives you the image's rotation degree, you can calculate it from the device's rotation degree and the orientation of camera sensor in the device:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Then, pass the media.Image
object and the
rotation degree value to InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Using a file URI
To create an InputImage
object from a file URI, pass the app context and file URI to
InputImage.fromFilePath()
. This is useful when you
use an ACTION_GET_CONTENT
intent to prompt the user to select
an image from their gallery app.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Using a ByteBuffer
or ByteArray
To create an InputImage
object from a ByteBuffer
or a ByteArray
, first calculate the image
rotation degree as previously described for media.Image
input.
Then, create the InputImage
object with the buffer or array, together with image's
height, width, color encoding format, and rotation degree:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Using a Bitmap
To create an InputImage
object from a Bitmap
object, make the following declaration:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
The image is represented by a Bitmap
object together with rotation degrees.
3. Get an instance of BarcodeScanner
Kotlin
val scanner = BarcodeScanning.getClient() // Or, to specify the formats to recognize: // val scanner = BarcodeScanning.getClient(options)
Java
BarcodeScanner scanner = BarcodeScanning.getClient(); // Or, to specify the formats to recognize: // BarcodeScanner scanner = BarcodeScanning.getClient(options);
4. Process the image
Pass the image to theprocess
method:
Kotlin
val result = scanner.process(image) .addOnSuccessListener { barcodes -> // Task completed successfully // ... } .addOnFailureListener { // Task failed with an exception // ... }
Java
Task<List<Barcode>> result = scanner.process(image) .addOnSuccessListener(new OnSuccessListener<List<Barcode>>() { @Override public void onSuccess(List<Barcode> barcodes) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
5. Get information from barcodes
If the barcode recognition operation succeeds, a list ofBarcode
objects are passed to the success listener. Each Barcode
object represents
a barcode that was detected in the image. For each barcode, you can get its
bounding coordinates in the input image, as well as the raw data encoded by the
barcode. Also, if the barcode scanner was able to determine the type of data
encoded by the barcode, you can get an object containing parsed data.
For example:
Kotlin
for (barcode in barcodes) { val bounds = barcode.boundingBox val corners = barcode.cornerPoints val rawValue = barcode.rawValue val valueType = barcode.valueType // See API reference for complete list of supported types when (valueType) { Barcode.TYPE_WIFI -> { val ssid = barcode.wifi!!.ssid val password = barcode.wifi!!.password val type = barcode.wifi!!.encryptionType } Barcode.TYPE_URL -> { val title = barcode.url!!.title val url = barcode.url!!.url } } }
Java
for (Barcode barcode: barcodes) { Rect bounds = barcode.getBoundingBox(); Point[] corners = barcode.getCornerPoints(); String rawValue = barcode.getRawValue(); int valueType = barcode.getValueType(); // See API reference for complete list of supported types switch (valueType) { case Barcode.TYPE_WIFI: String ssid = barcode.getWifi().getSsid(); String password = barcode.getWifi().getPassword(); int type = barcode.getWifi().getEncryptionType(); break; case Barcode.TYPE_URL: String title = barcode.getUrl().getTitle(); String url = barcode.getUrl().getUrl(); break; } }
Tips to improve real-time performance
If you want to scan barcodes in a real-time application, follow these guidelines to achieve the best framerates:
-
Don't capture input at the camera's native resolution. On some devices, capturing input at the native resolution produces extremely large (10+ megapixels) images, which results in very poor latency with no benefit to accuracy. Instead, only request the size from the camera that's required for barcode detection, which is usually no more than 2 megapixels.
If scanning speed is important, you can further lower the image capture resolution. However, bear in mind the minimum barcode size requirements outlined above.
If you are trying to recognize barcodes from a sequence of streaming video frames, the recognizer might produce different results from frame to frame. You should wait until you get a consecutive series of the same value to be confident you are returning a good result.
The Checksum digit is not supported for ITF and CODE-39.
- If you use the
Camera
orcamera2
API, throttle calls to the detector. If a new video frame becomes available while the detector is running, drop the frame. See theVisionProcessorBase
class in the quickstart sample app for an example. - If you use the
CameraX
API, be sure that backpressure strategy is set to its default valueImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
. This guarantees only one image will be delivered for analysis at a time. If more images are produced when the analyzer is busy, they will be dropped automatically and not queued for delivery. Once the image being analyzed is closed by calling ImageProxy.close(), the next latest image will be delivered. - If you use the output of the detector to overlay graphics on
the input image, first get the result from ML Kit, then render the image
and overlay in a single step. This renders to the display surface
only once for each input frame. See the
CameraSourcePreview
andGraphicOverlay
classes in the quickstart sample app for an example. - If you use the Camera2 API, capture images in
ImageFormat.YUV_420_888
format. If you use the older Camera API, capture images inImageFormat.NV21
format.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2025-01-09 UTC.