برای شناسایی و رمزگشایی بارکدها می توانید از کیت ML استفاده کنید.
ویژگی | تفکیک شده | همراه |
---|---|---|
پیاده سازی | مدل به صورت پویا از طریق خدمات Google Play دانلود می شود. | مدل به طور ایستا به برنامه شما در زمان ساخت پیوند داده می شود. |
اندازه برنامه | افزایش حجم حدود 200 کیلوبایت | حدود 2.4 مگابایت افزایش حجم. |
زمان اولیه سازی | ممکن است قبل از اولین استفاده باید منتظر بمانید تا مدل دانلود شود. | مدل فورا موجود است |
آن را امتحان کنید
- با برنامه نمونه بازی کنید تا نمونه استفاده از این API را ببینید.
- برای اجرای سرتاسر این API، به برنامه نمایشگاهی Material Design مراجعه کنید.
قبل از اینکه شروع کنی
در فایل
build.gradle
در سطح پروژه خود، مطمئن شوید که مخزن Maven Google را در هر دو بخشbuildscript
وallprojects
خود قرار دهید.وابستگی های کتابخانه های اندروید ML Kit را به فایل gradle سطح برنامه ماژول خود اضافه کنید، که معمولا
app/build.gradle
است. یکی از وابستگی های زیر را بر اساس نیاز خود انتخاب کنید:برای بستهبندی مدل با برنامهتان:
dependencies { // ... // Use this dependency to bundle the model with your app implementation 'com.google.mlkit:barcode-scanning:17.0.3' }
برای استفاده از مدل در خدمات Google Play:
dependencies { // ... // Use this dependency to use the dynamically downloaded model in Google Play Services implementation 'com.google.android.gms:play-services-mlkit-barcode-scanning:18.1.0' }
اگر انتخاب کردید که از مدل در خدمات Google Play استفاده کنید، میتوانید برنامه خود را طوری پیکربندی کنید که پس از نصب برنامه از فروشگاه Play، مدل را بهطور خودکار در دستگاه دانلود کنید. برای انجام این کار، اعلان زیر را به فایل
AndroidManifest.xml
برنامه خود اضافه کنید:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="barcode" > <!-- To use multiple models: android:value="barcode,model2,model3" --> </application>
همچنین میتوانید صریحاً در دسترس بودن مدل را بررسی کنید و از طریق سرویسهای Google Play ModuleInstallClient API درخواست دانلود کنید.
اگر دانلودهای مدل در زمان نصب را فعال نکنید یا درخواست دانلود صریح نداشته باشید، اولین باری که اسکنر را اجرا می کنید، مدل دانلود می شود. درخواستهایی که قبل از تکمیل دانلود ارائه میکنید، نتیجهای ندارند.
دستورالعمل های تصویر ورودی
برای اینکه کیت ML بتواند بارکدها را به طور دقیق بخواند، تصاویر ورودی باید حاوی بارکدهایی باشند که با داده های پیکسلی کافی نشان داده شوند.
نیازهای خاص داده پیکسلی هم به نوع بارکد و هم به مقدار داده ای که در آن کدگذاری شده است بستگی دارد، زیرا بسیاری از بارکدها از یک بار با اندازه متغیر پشتیبانی می کنند. به طور کلی، کوچکترین واحد معنی دار بارکد باید حداقل 2 پیکسل عرض و برای کدهای 2 بعدی، 2 پیکسل ارتفاع داشته باشد.
برای مثال، بارکدهای EAN-13 از میلهها و فضاهایی با عرض 1، 2، 3 یا 4 واحد تشکیل شدهاند، بنابراین تصویر بارکد EAN-13 در حالت ایدهآل دارای نوارها و فضاهایی است که حداقل 2، 4، 6 و عرض 8 پیکسل از آنجایی که یک بارکد EAN-13 در مجموع 95 واحد عرض دارد، بارکد باید حداقل 190 پیکسل باشد.
فرمتهای متراکمتر، مانند PDF417، برای خواندن قابل اطمینان ML Kit به ابعاد پیکسل بیشتری نیاز دارند. به عنوان مثال، یک کد PDF417 می تواند حداکثر 34 کلمه 17 واحدی در یک ردیف داشته باشد که در حالت ایده آل حداقل 1156 پیکسل عرض دارد.
فوکوس ضعیف تصویر می تواند بر دقت اسکن تأثیر بگذارد. اگر برنامه شما نتایج قابل قبولی دریافت نمی کند، از کاربر بخواهید که تصویر را دوباره بگیرد.
برای برنامههای معمولی، ارائه تصویری با وضوح بالاتر، مانند 1280x720 یا 1920x1080 توصیه میشود که بارکدها را از فاصلهای دورتر از دوربین قابل اسکن میکند.
با این حال، در برنامههایی که تأخیر حیاتی است، میتوانید با گرفتن تصاویر با وضوح پایینتر، عملکرد را بهبود ببخشید، اما نیاز دارید که بارکد بیشتر تصویر ورودی را تشکیل دهد. همچنین به نکاتی برای بهبود عملکرد در زمان واقعی مراجعه کنید.
1. اسکنر بارکد را پیکربندی کنید
اگر میدانید کدام قالبهای بارکد را میخواهید بخوانید، میتوانید سرعت بارکد یاب را با پیکربندی آن به گونهای که فقط آن فرمتها را شناسایی کند، افزایش دهید. به عنوان مثال، برای شناسایی فقط کدهای آزتک و کدهای QR، یک شی BarcodeScannerOptions
مانند مثال زیر بسازید:
کاتلین
val options = BarcodeScannerOptions.Builder() .setBarcodeFormats( Barcode.FORMAT_QR_CODE, Barcode.FORMAT_AZTEC) .build()
جاوا
BarcodeScannerOptions options = new BarcodeScannerOptions.Builder() .setBarcodeFormats( Barcode.FORMAT_QR_CODE, Barcode.FORMAT_AZTEC) .build();
فرمت های زیر پشتیبانی می شوند:
- کد 128 (
FORMAT_CODE_128
) - کد 39 (
FORMAT_CODE_39
) - کد 93 (
FORMAT_CODE_93
) - کدابار (
FORMAT_CODABAR
) - EAN-13 (
FORMAT_EAN_13
) - EAN-8 (
FORMAT_EAN_8
) - ITF (
FORMAT_ITF
) - UPC-A (
FORMAT_UPC_A
) - UPC-E (
FORMAT_UPC_E
) - کد QR (
FORMAT_QR_CODE
) - PDF417 (
FORMAT_PDF417
) - آزتک (
FORMAT_AZTEC
) - ماتریس داده (
FORMAT_DATA_MATRIX
)
2. تصویر ورودی را آماده کنید
برای تشخیص بارکدها در یک تصویر، یک شیInputImage
از Bitmap
، media.Image
، ByteBuffer
، آرایه بایت یا یک فایل روی دستگاه ایجاد کنید. سپس، شی InputImage
را به روش process
BarcodeScanner
کنید. می توانید یک شی InputImage
از منابع مختلف ایجاد کنید که هر کدام در زیر توضیح داده شده است.
استفاده از یک media.Image
برای ایجاد یک شیء InputImage
از یک شیء media.Image
، مانند زمانی که تصویری را از دوربین دستگاه میگیرید، شیء media.Image
.Image و چرخش تصویر را به InputImage.fromMediaImage()
منتقل کنید.
اگر از کتابخانه CameraX استفاده می کنید، کلاس های OnImageCapturedListener
و ImageAnalysis.Analyzer
مقدار چرخش را برای شما محاسبه می کنند.
کاتلین
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
جاوا
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
اگر از کتابخانه دوربینی که درجه چرخش تصویر را به شما می دهد استفاده نمی کنید، می توانید آن را از روی درجه چرخش دستگاه و جهت سنسور دوربین در دستگاه محاسبه کنید:
کاتلین
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
جاوا
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
سپس، شی media.Image
و مقدار درجه چرخش را به InputImage.fromMediaImage()
:
کاتلین
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
استفاده از URI فایل
برای ایجاد یک شی InputImage
از URI فایل، زمینه برنامه و فایل URI را به InputImage.fromFilePath()
کنید. این زمانی مفید است که از یک هدف ACTION_GET_CONTENT
استفاده می کنید تا از کاربر بخواهید تصویری را از برنامه گالری خود انتخاب کند.
کاتلین
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
استفاده از ByteBuffer
یا ByteArray
برای ایجاد یک شی InputImage
از ByteBuffer
یا ByteArray
، ابتدا درجه چرخش تصویر را همانطور که قبلا برای ورودی media.Image
توضیح داده شد محاسبه کنید. سپس، شی InputImage
را با بافر یا آرایه به همراه ارتفاع، عرض، فرمت کدگذاری رنگ و درجه چرخش تصویر ایجاد کنید:
کاتلین
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
جاوا
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
استفاده از Bitmap
برای ایجاد یک شی InputImage
از یک شی Bitmap
، اعلان زیر را انجام دهید:
کاتلین
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
تصویر با یک شی Bitmap
همراه با درجه چرخش نمایش داده می شود.
3. یک نمونه از BarcodeScanner را دریافت کنید
کاتلین
val scanner = BarcodeScanning.getClient() // Or, to specify the formats to recognize: // val scanner = BarcodeScanning.getClient(options)
جاوا
BarcodeScanner scanner = BarcodeScanning.getClient(); // Or, to specify the formats to recognize: // BarcodeScanner scanner = BarcodeScanning.getClient(options);
4. تصویر را پردازش کنید
ارسال تصویر به روشprocess
:کاتلین
val result = scanner.process(image) .addOnSuccessListener { barcodes -> // Task completed successfully // ... } .addOnFailureListener { // Task failed with an exception // ... }
جاوا
Task<List<Barcode>> result = scanner.process(image) .addOnSuccessListener(new OnSuccessListener<List<Barcode>>() { @Override public void onSuccess(List<Barcode> barcodes) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
5. اطلاعات را از بارکد دریافت کنید
اگر عملیات تشخیص بارکد موفقیت آمیز باشد، لیستی از اشیاءBarcode
به شنونده موفقیت ارسال می شود. هر شیء Barcode
نشان دهنده بارکدی است که در تصویر شناسایی شده است. برای هر بارکد، می توانید مختصات مرزی آن را در تصویر ورودی و همچنین داده های خام کدگذاری شده توسط بارکد را دریافت کنید. همچنین، اگر اسکنر بارکد قادر به تعیین نوع داده های کدگذاری شده توسط بارکد بود، می توانید یک شی حاوی داده های تجزیه شده را دریافت کنید.مثلا:
کاتلین
for (barcode in barcodes) { val bounds = barcode.boundingBox val corners = barcode.cornerPoints val rawValue = barcode.rawValue val valueType = barcode.valueType // See API reference for complete list of supported types when (valueType) { Barcode.TYPE_WIFI -> { val ssid = barcode.wifi!!.ssid val password = barcode.wifi!!.password val type = barcode.wifi!!.encryptionType } Barcode.TYPE_URL -> { val title = barcode.url!!.title val url = barcode.url!!.url } } }
جاوا
for (Barcode barcode: barcodes) { Rect bounds = barcode.getBoundingBox(); Point[] corners = barcode.getCornerPoints(); String rawValue = barcode.getRawValue(); int valueType = barcode.getValueType(); // See API reference for complete list of supported types switch (valueType) { case Barcode.TYPE_WIFI: String ssid = barcode.getWifi().getSsid(); String password = barcode.getWifi().getPassword(); int type = barcode.getWifi().getEncryptionType(); break; case Barcode.TYPE_URL: String title = barcode.getUrl().getTitle(); String url = barcode.getUrl().getUrl(); break; } }
نکاتی برای بهبود عملکرد در زمان واقعی
اگر می خواهید بارکدها را در یک برنامه بلادرنگ اسکن کنید، این دستورالعمل ها را برای دستیابی به بهترین نرخ فریم دنبال کنید:
ورودی را با وضوح اصلی دوربین نگیرید. در برخی از دستگاهها، گرفتن ورودی با وضوح اصلی تصاویر بسیار بزرگ (10+ مگاپیکسل) تولید میکند که منجر به تأخیر بسیار ضعیف و بدون مزیتی برای دقت میشود. در عوض، فقط اندازه ای را از دوربین درخواست کنید که برای تشخیص بارکد لازم است، که معمولاً بیشتر از 2 مگاپیکسل نیست.
اگر سرعت اسکن مهم است، می توانید وضوح تصویربرداری را بیشتر کاهش دهید. با این حال، حداقل الزامات اندازه بارکد که در بالا ذکر شد را در نظر داشته باشید.
اگر میخواهید بارکدها را از دنبالهای از فریمهای ویدیوی پخش شده تشخیص دهید، تشخیصدهنده ممکن است نتایج متفاوتی را از فریم به فریم دیگر تولید کند. باید منتظر بمانید تا یک سری متوالی با همان مقدار بدست آورید تا مطمئن شوید که نتیجه خوبی را به دست می آورید.
رقم Checksum برای ITF و CODE-39 پشتیبانی نمی شود.
- اگر از
Camera
یاcamera2
API استفاده می کنید، دریچه گاز با آشکارساز تماس می گیرد. اگر یک قاب ویدیویی جدید در حین کار کردن آشکارساز در دسترس قرار گرفت، قاب را رها کنید. برای مثال، کلاسVisionProcessorBase
را در برنامه نمونه سریع شروع کنید. - اگر از
CameraX
API استفاده میکنید، مطمئن شوید که استراتژی فشار برگشتی روی مقدار پیشفرضImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
تنظیم شده است.STRATEGY_KEEP_ONLY_LATEST. این تضمین می کند که هر بار فقط یک تصویر برای تجزیه و تحلیل تحویل داده می شود. اگر در زمانی که آنالایزر مشغول است، تصاویر بیشتری تولید شود، به طور خودکار حذف می شوند و برای تحویل در صف قرار نمی گیرند. هنگامی که تصویر مورد تجزیه و تحلیل با فراخوانی ImageProxy.close بسته شد، آخرین تصویر بعدی تحویل داده می شود. - اگر از خروجی آشکارساز برای همپوشانی گرافیک روی تصویر ورودی استفاده میکنید، ابتدا نتیجه را از کیت ML بگیرید، سپس تصویر را در یک مرحله رندر کنید و همپوشانی کنید. این تنها یک بار برای هر فریم ورودی به سطح نمایشگر نمایش داده می شود. برای مثال، کلاسهای
CameraSourcePreview
وGraphicOverlay
را در برنامه نمونه شروع سریع ببینید. - اگر از Camera2 API استفاده می کنید، تصاویر را با فرمت
ImageFormat.YUV_420_888
بگیرید. اگر از دوربین قدیمیتر API استفاده میکنید، تصاویر را با فرمتImageFormat.NV21
بگیرید.