使用机器学习套件检测人脸 (Android)

您可以使用机器学习套件检测图片和视频中的人脸。

功能未捆绑捆绑
实现模型会通过 Google Play 服务动态下载。模型在构建时会静态链接到您的应用。
应用大小大小增加约 800 KB。大小增加约 6.9 MB。
初始化时间首次使用时可能需要等待模型下载完毕。模型可立即使用

试试看

  • 试用示例应用,了解此 API 的使用示例。
  • 您可以通过 Codelab 亲自试用该代码。

准备工作

  1. 请务必在项目级 build.gradle 文件中的 buildscriptallprojects 部分添加 Google 的 Maven 代码库。

  2. 将 Android 版机器学习套件库的依赖项添加到模块的应用级 Gradle 文件(通常为 app/build.gradle)。根据您的需求选择以下某个依赖项:

    如需将模型与您的应用捆绑在一起,请执行以下操作

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:face-detection:16.1.7'
    }
    

    如需在 Google Play 服务中使用该模型,请执行以下操作

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-face-detection:17.1.0'
    }
    
  3. 如果您选择在 Google Play 服务中使用模型,则可以将您的应用配置为在用户从 Play 商店安装您的应用后,自动将模型下载到设备。为此,请将以下声明添加到应用的 AndroidManifest.xml 文件中:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="face" >
          <!-- To use multiple models: android:value="face,model2,model3" -->
    </application>
    

    您还可以通过 Google Play 服务 ModuleInstallClient API 明确检查模型可用性并请求下载。

    如果您未启用在安装时下载模型的选项或未请求明确下载,系统将在您首次运行检测器时下载模型。您在下载完毕之前提出的请求不会产生任何结果。

输入图片准则

对于人脸识别,您使用的图片尺寸应至少为 480x360 像素。 为了使机器学习套件准确检测人脸,输入图片必须包含由足够像素数据表示的人脸。通常,要在图片中检测的每张人脸应至少为 100x100 像素。如果要检测人脸轮廓,机器学习套件需要更高的分辨率输入:每张人脸应至少为 200x200 像素。

如果您是在实时应用中检测人脸,可能还需要考虑输入图片的整体尺寸。较小图片的处理速度相对较快,因此,为了减少延迟时间,请以较低的分辨率捕获图片(但请牢记上述准确性要求),并确保正文的面部在图片中占尽可能大的部分。另请参阅提高实时性能的相关提示

图片聚焦不佳也会影响准确性。如果您无法获得满意的结果,请让用户重新拍摄图片。

人脸相对于相机的方向也会影响机器学习套件检测的面部特征。请参阅人脸检测概念

1. 配置人脸检测器

在对图片应用人脸检测之前,如果要更改人脸检测器的任何默认设置,请使用 FaceDetectorOptions 对象指定这些设置。您可以更改以下设置:

设置
setPerformanceMode PERFORMANCE_MODE_FAST(默认) | PERFORMANCE_MODE_ACCURATE

在检测人脸时更注重速度还是准确性。

setLandmarkMode LANDMARK_MODE_NONE(默认) | LANDMARK_MODE_ALL

是否尝试识别面部“特征点”:眼睛、耳朵、鼻子、脸颊、嘴巴等等。

setContourMode CONTOUR_MODE_NONE(默认) | CONTOUR_MODE_ALL

是否检测面部特征的轮廓。仅检测图片中最突出的人脸的轮廓。

setClassificationMode CLASSIFICATION_MODE_NONE(默认) | CLASSIFICATION_MODE_ALL

是否将人脸分为不同类别(例如“微笑”和“睁眼”)。

setMinFaceSize float(默认值:0.1f

设置所需的最小人脸大小,表示为头部宽度与图片宽度的比率。

enableTracking false(默认)| true

是否为人脸分配 ID,以用于跨图片跟踪人脸。

请注意,启用轮廓检测后,仅会检测一张人脸,因此人脸跟踪不会产生有用的结果。因此,为了提高检测速度,请勿同时启用轮廓检测和人脸跟踪。

例如:

Kotlin

// High-accuracy landmark detection and face classification
val highAccuracyOpts = FaceDetectorOptions.Builder()
        .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE)
        .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL)
        .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL)
        .build()

// Real-time contour detection
val realTimeOpts = FaceDetectorOptions.Builder()
        .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL)
        .build()

Java

// High-accuracy landmark detection and face classification
FaceDetectorOptions highAccuracyOpts =
        new FaceDetectorOptions.Builder()
                .setPerformanceMode(FaceDetectorOptions.PERFORMANCE_MODE_ACCURATE)
                .setLandmarkMode(FaceDetectorOptions.LANDMARK_MODE_ALL)
                .setClassificationMode(FaceDetectorOptions.CLASSIFICATION_MODE_ALL)
                .build();

// Real-time contour detection
FaceDetectorOptions realTimeOpts =
        new FaceDetectorOptions.Builder()
                .setContourMode(FaceDetectorOptions.CONTOUR_MODE_ALL)
                .build();

2. 准备输入图片

如需检测图片中的人脸,请基于设备上的以下资源创建一个 InputImage 对象:Bitmapmedia.ImageByteBuffer、字节数组或文件。然后,将 InputImage 对象传递给 FaceDetectorprocess 方法。

对于人脸检测,您使用的图片尺寸应至少为 480x360 像素。如果您要实时检测人脸,以此最低分辨率捕获帧有助于减少延迟时间。

您可以基于不同来源创建 InputImage 对象,下文分别介绍了具体方法。

使用 media.Image

如需基于 media.Image 对象创建 InputImage 对象(例如从设备的相机捕获图片时),请将 media.Image 对象和图片的旋转角度传递给 InputImage.fromMediaImage()

如果您使用 CameraX 库,OnImageCapturedListenerImageAnalysis.Analyzer 类会为您计算旋转角度值。

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

如果您不使用可提供图片旋转角度的相机库,则可以根据设备的旋转角度和设备中相机传感器的朝向来计算旋转角度:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

然后,将 media.Image 对象及其旋转角度值传递给 InputImage.fromMediaImage()

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

使用文件 URI

如需基于文件 URI 创建 InputImage 对象,请将应用上下文和文件 URI 传递给 InputImage.fromFilePath()。如果您使用 ACTION_GET_CONTENT intent 提示用户从图库应用中选择图片,则这一操作非常有用。

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

使用 ByteBufferByteArray

如需基于 ByteBufferByteArray 创建 InputImage 对象,请先按先前 media.Image 输入的说明计算图片旋转角度。然后,使用缓冲区或数组以及图片的高度、宽度、颜色编码格式和旋转角度创建 InputImage 对象:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

使用 Bitmap

如需基于 Bitmap 对象创建 InputImage 对象,请进行以下声明:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

图片由 Bitmap 对象以及旋转角度表示。

3. 获取 FaceDetector 实例

Kotlin

val detector = FaceDetection.getClient(options)
// Or, to use the default option:
// val detector = FaceDetection.getClient();

Java

FaceDetector detector = FaceDetection.getClient(options);
// Or use the default options:
// FaceDetector detector = FaceDetection.getClient();

4. 处理图片

将图片传递给 process 方法:

Kotlin

val result = detector.process(image)
        .addOnSuccessListener { faces ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Java

Task<List<Face>> result =
        detector.process(image)
                .addOnSuccessListener(
                        new OnSuccessListener<List<Face>>() {
                            @Override
                            public void onSuccess(List<Face> faces) {
                                // Task completed successfully
                                // ...
                            }
                        })
                .addOnFailureListener(
                        new OnFailureListener() {
                            @Override
                            public void onFailure(@NonNull Exception e) {
                                // Task failed with an exception
                                // ...
                            }
                        });

5. 获取检测到的人脸的相关信息

如果人脸检测操作成功,系统会向成功监听器传递一组 Face 对象。每个 Face 对象都代表一张在图片中检测到的面孔。对于每张面孔,您可以获取它在输入图片中的边界坐标,以及您已配置面部检测器查找的任何其他信息。例如:

Kotlin

for (face in faces) {
    val bounds = face.boundingBox
    val rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees
    val rotZ = face.headEulerAngleZ // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    val leftEar = face.getLandmark(FaceLandmark.LEFT_EAR)
    leftEar?.let {
        val leftEarPos = leftEar.position
    }

    // If contour detection was enabled:
    val leftEyeContour = face.getContour(FaceContour.LEFT_EYE)?.points
    val upperLipBottomContour = face.getContour(FaceContour.UPPER_LIP_BOTTOM)?.points

    // If classification was enabled:
    if (face.smilingProbability != null) {
        val smileProb = face.smilingProbability
    }
    if (face.rightEyeOpenProbability != null) {
        val rightEyeOpenProb = face.rightEyeOpenProbability
    }

    // If face tracking was enabled:
    if (face.trackingId != null) {
        val id = face.trackingId
    }
}

Java

for (Face face : faces) {
    Rect bounds = face.getBoundingBox();
    float rotY = face.getHeadEulerAngleY();  // Head is rotated to the right rotY degrees
    float rotZ = face.getHeadEulerAngleZ();  // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    FaceLandmark leftEar = face.getLandmark(FaceLandmark.LEFT_EAR);
    if (leftEar != null) {
        PointF leftEarPos = leftEar.getPosition();
    }

    // If contour detection was enabled:
    List<PointF> leftEyeContour =
            face.getContour(FaceContour.LEFT_EYE).getPoints();
    List<PointF> upperLipBottomContour =
            face.getContour(FaceContour.UPPER_LIP_BOTTOM).getPoints();

    // If classification was enabled:
    if (face.getSmilingProbability() != null) {
        float smileProb = face.getSmilingProbability();
    }
    if (face.getRightEyeOpenProbability() != null) {
        float rightEyeOpenProb = face.getRightEyeOpenProbability();
    }

    // If face tracking was enabled:
    if (face.getTrackingId() != null) {
        int id = face.getTrackingId();
    }
}

人脸轮廓示例

启用人脸轮廓检测后,对于检测到的每个面部特征,您会获得一系列点。这些点表示地图项的形状。如需详细了解轮廓的表示方式,请参阅人脸检测概念

下图展示了这些点与人脸的对应情况,点击图片可放大:

检测到的人脸轮廓网格的示例

实时人脸检测

如果要在实时应用中使用人脸检测,请遵循以下准则以实现最佳帧速率:

  • 将人脸检测器配置为使用人脸轮廓检测或分类和特征点检测,但不能同时使用这二者:

    轮廓检测
    特征点检测
    分类
    特征点检测和分类
    轮廓检测和特征点检测
    轮廓检测和分类
    轮廓检测、特征点检测和分类

  • 启用 FAST 模式(默认情况下启用)。

  • 建议以较低分辨率捕获图片,但是,您也要牢记此 API 的图片尺寸要求。

  • 如果您使用 Cameracamera2 API,请限制对检测器的调用次数。如果在检测器运行时有新的视频帧可用,请丢弃该帧。如需查看示例,请参阅快速入门示例应用中的 VisionProcessorBase 类。
  • 如果您使用 CameraX API,请务必将回压策略设置为默认值 ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST。 这样可以保证一次只传送一张图片进行分析。如果在分析器繁忙时生成了更多图片,系统会自动舍弃这些图片,而不会将其加入队列以供传送。通过调用 ImageProxy.close() 关闭要分析的图片后,系统会传送下一个最新图片。
  • 如果要使用检测器的输出在输入图片上叠加图形,请先从机器学习套件获取结果,然后在一个步骤中完成图片的呈现和叠加。这样,每个输入帧只需在显示表面呈现一次。如需查看示例,请参阅快速入门示例应用中的 CameraSourcePreview GraphicOverlay 类。
  • 如果您使用 Camera2 API,请以 ImageFormat.YUV_420_888 格式捕获图片。如果您使用旧版 Camera API,请以 ImageFormat.NV21 格式捕获图片。