Detectar informações da malha de rostos com o Kit de ML no Android

Você pode usar o Kit de ML para detectar rostos em imagens e vídeos semelhantes a selfies.

API Face Mesh Detection
Nome do SDKface-mesh-detection
ImplementaçãoO código e os recursos são vinculados estaticamente ao app no tempo de build.
Impacto no tamanho do appAprox.6,4 MB
DesempenhoEm tempo real na maioria dos dispositivos.

Faça um teste

Antes de começar

  1. No arquivo build.gradle no nível do projeto, inclua a propriedade Repositório Maven nas seções buildscript e allprojects.

  2. Adicione a dependência da biblioteca de detecção de malha facial do kit de ML ao seu arquivo do Gradle do módulo no nível do app, que geralmente é app/build.gradle:

    dependencies {
     // ...
    
     implementation 'com.google.mlkit:face-mesh-detection:16.0.0-beta1'
    }
    

Diretrizes de imagens de entrada

  1. As imagens precisam ser tiradas a aproximadamente dois metros da câmera do dispositivo. Por isso, se os rostos são grandes o suficiente para o reconhecimento ideal da malha facial. Em geral, quanto maior o rosto, melhor o reconhecimento da malha facial.

  2. O rosto precisa estar de frente para a câmera com pelo menos metade dele visível. Qualquer objeto grande entre o rosto e a câmera pode resultar em queda precisão.

Se você quiser detectar rostos em um aplicativo em tempo real, também considere as dimensões gerais da imagem de entrada. Imagens menores podem ser são processados mais rapidamente. Por isso, capturar imagens em resoluções mais baixas reduz a latência. No entanto, lembre-se dos requisitos de precisão acima e garanta que os o rosto da pessoa ocupa o máximo possível da imagem.

Configurar o detector de malha facial

Se você quiser mudar as configurações padrão do detector de malha facial, especifique essas configurações com FaceMeshDetectorOptions objeto. Você pode alterar as seguintes configurações:

  1. setUseCase

    • BOUNDING_BOX_ONLY: fornece apenas uma caixa delimitadora para uma malha facial detectada. Este é o detector facial mais rápido, mas tem limitação de alcance(rostos deve estar a cerca de 2 metros da câmera).

    • FACE_MESH (opção padrão): fornece uma caixa delimitadora e um rosto adicional. informações de malha (468 pontos em 3D e informações de triângulo). Quando comparado ao BOUNDING_BOX_ONLY, a latência aumenta cerca de 15%, conforme medido em Pixel 3

Exemplo:

Kotlin

val defaultDetector = FaceMeshDetection.getClient(
  FaceMeshDetectorOptions.DEFAULT_OPTIONS)

val boundingBoxDetector = FaceMeshDetection.getClient(
  FaceMeshDetectorOptions.Builder()
    .setUseCase(UseCase.BOUNDING_BOX_ONLY)
    .build()
)

Java

FaceMeshDetector defaultDetector =
        FaceMeshDetection.getClient(
                FaceMeshDetectorOptions.DEFAULT_OPTIONS);

FaceMeshDetector boundingBoxDetector = FaceMeshDetection.getClient(
        new FaceMeshDetectorOptions.Builder()
                .setUseCase(UseCase.BOUNDING_BOX_ONLY)
                .build()
        );

Preparar a imagem de entrada

Para detectar rostos em uma imagem, crie um objeto InputImage usando uma Bitmap, media.Image, ByteBuffer, matriz de bytes ou um arquivo no dispositivo. Em seguida, transmita o objeto InputImage para o método process do FaceDetector.

Para a detecção de malha facial, use uma imagem com dimensões de pelo menos 480x360 pixels. Se você detectar rostos em tempo real, capturar frames nessa resolução mínima pode ajudar a reduzir a latência.

Você pode criar um InputImage de diferentes origens, cada uma explicada abaixo.

Como usar um media.Image

Para criar um InputImage de um objeto media.Image, como quando você captura uma imagem de um da câmera do dispositivo, transmita o objeto media.Image e o rotação para InputImage.fromMediaImage().

Se você usar o método CameraX, os recursos OnImageCapturedListener e As classes ImageAnalysis.Analyzer calculam o valor de rotação para você.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Se você não usar uma biblioteca de câmera que informe o grau de rotação da imagem, pode calculá-lo usando o grau de rotação do dispositivo e a orientação da câmera no dispositivo:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Em seguida, transmita o objeto media.Image e o grau de rotação para InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Usar um URI de arquivo

Para criar um InputImage de um URI de arquivo, transmita o contexto do aplicativo e o URI do arquivo para InputImage.fromFilePath(). Isso é útil quando você usar uma intent ACTION_GET_CONTENT para solicitar que o usuário selecione uma imagem do app Galeria.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Como usar ByteBuffer ou ByteArray

Para criar um InputImage objeto de uma ByteBuffer ou ByteArray, primeiro calcule a imagem grau de rotação conforme descrito anteriormente para a entrada media.Image. Depois, crie o objeto InputImage com o buffer ou a matriz, junto com o altura, largura, formato de codificação de cores e grau de rotação:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Como usar um Bitmap

Para criar um InputImage de um objeto Bitmap, faça a seguinte declaração:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

A imagem é representada por um objeto Bitmap com os graus de rotação.

Processar a imagem

Transmita a imagem para o método process:

Kotlin

val result = detector.process(image)
        .addOnSuccessListener { result ->
            // Task completed successfully
            // …
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // …
        }

Java


Task<List<FaceMesh>> result = detector.process(image)
        .addOnSuccessListener(
                new OnSuccessListener<List<FaceMesh>>() {
                    @Override
                    public void onSuccess(List<FaceMesh> result) {
                        // Task completed successfully
                        // …
                    }
                })
        .addOnFailureListener(
                new OnFailureListener() {
                    @Override
                    Public void onFailure(Exception e) {
                        // Task failed with an exception
                        // …
                    }
                });

Receber informações sobre a malha facial detectada

Se algum rosto for detectado na imagem, uma lista de objetos FaceMesh será transmitida ao o listener de sucesso. Cada FaceMesh representa um rosto detectado no imagem. É possível receber as coordenadas delimitadoras na entrada de cada malha facial imagem, assim como qualquer outra informação que você configurou a malha de rosto de detecção para encontrar.

Kotlin

for (faceMesh in faceMeshs) {
    val bounds: Rect = faceMesh.boundingBox()

    // Gets all points
    val faceMeshpoints = faceMesh.allPoints
    for (faceMeshpoint in faceMeshpoints) {
      val index: Int = faceMeshpoints.index()
      val position = faceMeshpoint.position
    }

    // Gets triangle info
    val triangles: List<Triangle<FaceMeshPoint>> = faceMesh.allTriangles
    for (triangle in triangles) {
      // 3 Points connecting to each other and representing a triangle area.
      val connectedPoints = triangle.allPoints()
    }
}

Java

for (FaceMesh faceMesh : faceMeshs) {
    Rect bounds = faceMesh.getBoundingBox();

    // Gets all points
    List<FaceMeshPoint> faceMeshpoints = faceMesh.getAllPoints();
    for (FaceMeshPoint faceMeshpoint : faceMeshpoints) {
        int index = faceMeshpoints.getIndex();
        PointF3D position = faceMeshpoint.getPosition();
    }

    // Gets triangle info
    List<Triangle<FaceMeshPoint>> triangles = faceMesh.getAllTriangles();
    for (Triangle<FaceMeshPoint> triangle : triangles) {
        // 3 Points connecting to each other and representing a triangle area.
        List<FaceMeshPoint> connectedPoints = triangle.getAllPoints();
    }
}