অ্যান্ড্রয়েডে অটোএমএল-প্রশিক্ষিত মডেলের ছবি লেবেল করুন

AutoML Vision Edge ব্যবহার করে আপনার নিজস্ব মডেল প্রশিক্ষণের পর, আপনি এটি আপনার অ্যাপে ছবি লেবেল করার জন্য ব্যবহার করতে পারেন। AutoML Vision Edge থেকে প্রশিক্ষিত মডেলগুলিকে একীভূত করার দুটি উপায় রয়েছে: আপনি আপনার অ্যাপের সম্পদ ফোল্ডারের ভিতরে রেখে মডেলটি বান্ডেল করতে পারেন, অথবা আপনি Firebase থেকে গতিশীলভাবে এটি ডাউনলোড করতে পারেন।
মডেল বান্ডলিং বিকল্পগুলি
আপনার অ্যাপে বান্ডেল করা
  • মডেলটি আপনার অ্যাপের APK-এর অংশ।
  • অ্যান্ড্রয়েড ডিভাইস অফলাইনে থাকলেও মডেলটি তাৎক্ষণিকভাবে উপলব্ধ।
  • ফায়ারবেস প্রকল্পের কোন প্রয়োজন নেই
Firebase এর সাথে হোস্ট করা হয়েছে
  • Firebase Machine Learning- এ আপলোড করে মডেলটি হোস্ট করুন।
  • APK এর আকার হ্রাস করে
  • মডেলটি চাহিদা অনুযায়ী ডাউনলোড করা হয়।
  • আপনার অ্যাপ পুনঃপ্রকাশ না করেই মডেল আপডেটগুলি পুশ করুন
  • ফায়ারবেস রিমোট কনফিগারেশনের সাহায্যে সহজ এ/বি টেস্টিং
  • একটি Firebase প্রকল্প প্রয়োজন

চেষ্টা করে দেখো

শুরু করার আগে

১. আপনার প্রজেক্ট-লেভেল build.gradle ফাইলে, আপনার buildscript এবং allprojects উভয় বিভাগেই Google এর Maven রিপোজিটরি অন্তর্ভুক্ত করতে ভুলবেন না।

2. আপনার মডিউলের অ্যাপ-লেভেল গ্রেডল ফাইলে ML কিট অ্যান্ড্রয়েড লাইব্রেরির জন্য নির্ভরতা যোগ করুন, যা সাধারণত app/build.gradle হয়: আপনার অ্যাপের সাথে একটি মডেল বান্ডেল করার জন্য:
    dependencies {
      // ...
      // Image labeling feature with bundled automl model
      implementation 'com.google.mlkit:image-labeling-automl:16.2.1'
    }
    
Firebase থেকে একটি মডেল গতিশীলভাবে ডাউনলোড করার জন্য, linkFirebase নির্ভরতা যোগ করুন:
    dependencies {
      // ...
      // Image labeling feature with automl model downloaded
      // from firebase
      implementation 'com.google.mlkit:image-labeling-automl:16.2.1'
      implementation 'com.google.mlkit:linkfirebase:16.0.1'
    }
    
৩. যদি আপনি একটি মডেল ডাউনলোড করতে চান , তাহলে আপনার অ্যান্ড্রয়েড প্রোজেক্টে Firebase যোগ করুন , যদি আপনি ইতিমধ্যেই তা না করে থাকেন। মডেলটি বান্ডেল করার সময় এটি প্রয়োজন হয় না।

1. মডেলটি লোড করুন

একটি স্থানীয় মডেল উৎস কনফিগার করুন

আপনার অ্যাপের সাথে মডেলটি বান্ডেল করতে:

১. ফায়ারবেস কনসোল থেকে ডাউনলোড করা জিপ আর্কাইভ থেকে মডেল এবং এর মেটাডেটা বের করুন। আমরা আপনাকে ফাইলগুলি ডাউনলোড করার সাথে সাথে ব্যবহার করার পরামর্শ দিচ্ছি, কোনও পরিবর্তন ছাড়াই (ফাইলের নাম সহ)।

২. আপনার অ্যাপ প্যাকেজে আপনার মডেল এবং এর মেটাডেটা ফাইলগুলি অন্তর্ভুক্ত করুন:

ক. যদি আপনার প্রোজেক্টে কোন অ্যাসেট ফোল্ডার না থাকে, তাহলে app/ ফোল্ডারে ডান ক্লিক করে, তারপর New > Folder > Asset Folder এ ক্লিক করে একটি তৈরি করুন।

খ. মডেল ফাইলগুলি ধারণ করার জন্য সম্পদ ফোল্ডারের অধীনে একটি সাব-ফোল্ডার তৈরি করুন।

গ. model.tflite , dict.txt , এবং manifest.json ফাইলগুলি সাব-ফোল্ডারে কপি করুন (তিনটি ফাইলই একই ফোল্ডারে থাকতে হবে)।

৩. অ্যাপ তৈরির সময় Gradle মডেল ফাইলটি সংকুচিত না করে তা নিশ্চিত করার জন্য আপনার অ্যাপের build.gradle ফাইলে নিম্নলিখিতটি যোগ করুন:
    android {
        // ...
        aaptOptions {
            noCompress "tflite"
        }
    }
    
মডেল ফাইলটি অ্যাপ প্যাকেজে অন্তর্ভুক্ত করা হবে এবং একটি কাঁচা সম্পদ হিসেবে ML Kit-এর কাছে উপলব্ধ হবে।

দ্রষ্টব্য: অ্যান্ড্রয়েড গ্রেডল প্লাগইনের ৪.১ সংস্করণ থেকে শুরু করে, .tflite ডিফল্টরূপে noCompress তালিকায় যোগ করা হবে এবং উপরেরটি আর প্রয়োজন নেই।

৪. মডেল ম্যানিফেস্ট ফাইলের পাথ নির্দিষ্ট করে LocalModel অবজেক্ট তৈরি করুন:

কোটলিন

val localModel = AutoMLImageLabelerLocalModel.Builder()
        .setAssetFilePath("manifest.json")
        // or .setAbsoluteFilePath(absolute file path to manifest file)
        .build()

জাভা

AutoMLImageLabelerLocalModel localModel =
    new AutoMLImageLabelerLocalModel.Builder()
        .setAssetFilePath("manifest.json")
        // or .setAbsoluteFilePath(absolute file path to manifest file)
        .build();

একটি Firebase-হোস্টেড মডেল সোর্স কনফিগার করুন

রিমোটলি-হোস্টেড মডেল ব্যবহার করতে, একটি RemoteModel অবজেক্ট তৈরি করুন, যেখানে আপনি মডেলটি প্রকাশ করার সময় যে নামটি দিয়েছিলেন তা উল্লেখ করুন:

কোটলিন

// Specify the name you assigned in the Firebase console.
val remoteModel =
    AutoMLImageLabelerRemoteModel.Builder("your_model_name").build()

জাভা

// Specify the name you assigned in the Firebase console.
AutoMLImageLabelerRemoteModel remoteModel =
    new AutoMLImageLabelerRemoteModel.Builder("your_model_name").build();

তারপর, মডেল ডাউনলোড টাস্ক শুরু করুন, আপনি কোন শর্তাবলীর অধীনে ডাউনলোডের অনুমতি দিতে চান তা উল্লেখ করুন। যদি মডেলটি ডিভাইসে না থাকে, অথবা মডেলের একটি নতুন সংস্করণ উপলব্ধ থাকে, তাহলে টাস্কটি Firebase থেকে অ্যাসিঙ্ক্রোনাসভাবে মডেলটি ডাউনলোড করবে:

কোটলিন

val downloadConditions = DownloadConditions.Builder()
    .requireWifi()
    .build()
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
    .addOnSuccessListener {
        // Success.
    }

জাভা

DownloadConditions downloadConditions = new DownloadConditions.Builder()
        .requireWifi()
        .build();
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
        .addOnSuccessListener(new OnSuccessListener() {
            @Override
            public void onSuccess(@NonNull Task task) {
                // Success.
            }
        });

অনেক অ্যাপ তাদের ইনিশিয়ালাইজেশন কোডে ডাউনলোডের কাজ শুরু করে, কিন্তু মডেলটি ব্যবহার করার আগে আপনি যেকোনো সময় তা করতে পারেন।

আপনার মডেল থেকে একটি ইমেজ লেবেলার তৈরি করুন

আপনার মডেল সোর্সগুলি কনফিগার করার পরে, তাদের যেকোনো একটি থেকে একটি ImageLabeler অবজেক্ট তৈরি করুন।

যদি আপনার কেবল স্থানীয়ভাবে তৈরি মডেল থাকে, তাহলে আপনার AutoMLImageLabelerLocalModel অবজেক্ট থেকে একটি লেবেলার তৈরি করুন এবং আপনার প্রয়োজনীয় কনফিডেন্স স্কোর থ্রেশহোল্ড কনফিগার করুন ( আপনার মডেল মূল্যায়ন করুন দেখুন):

কোটলিন

val autoMLImageLabelerOptions = AutoMLImageLabelerOptions.Builder(localModel)
    .setConfidenceThreshold(0)  // Evaluate your model in the Firebase console
                                // to determine an appropriate value.
    .build()
val labeler = ImageLabeling.getClient(autoMLImageLabelerOptions)

জাভা

AutoMLImageLabelerOptions autoMLImageLabelerOptions =
        new AutoMLImageLabelerOptions.Builder(localModel)
                .setConfidenceThreshold(0.0f)  // Evaluate your model in the Firebase console
                                               // to determine an appropriate value.
                .build();
ImageLabeler labeler = ImageLabeling.getClient(autoMLImageLabelerOptions)

যদি আপনার একটি রিমোটলি-হোস্টেড মডেল থাকে, তাহলে এটি চালানোর আগে আপনাকে এটি ডাউনলোড করা হয়েছে কিনা তা পরীক্ষা করতে হবে। আপনি মডেল ম্যানেজারের isModelDownloaded() পদ্ধতি ব্যবহার করে মডেল ডাউনলোড টাস্কের অবস্থা পরীক্ষা করতে পারেন।

যদিও লেবেলার চালানোর আগে আপনাকে কেবল এটি নিশ্চিত করতে হবে, যদি আপনার কাছে একটি রিমোটলি-হোস্টেড মডেল এবং একটি স্থানীয়ভাবে-বান্ডেলড মডেল উভয়ই থাকে, তাহলে ইমেজ লেবেলারটি ইনস্ট্যান্টিয়েট করার সময় এই পরীক্ষাটি করা যুক্তিসঙ্গত হতে পারে: যদি এটি ডাউনলোড করা থাকে তবে রিমোট মডেল থেকে একটি লেবেলার তৈরি করুন, এবং অন্যথায় স্থানীয় মডেল থেকে।

কোটলিন

RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
    .addOnSuccessListener { isDownloaded -> 
    val optionsBuilder =
        if (isDownloaded) {
            AutoMLImageLabelerOptions.Builder(remoteModel)
        } else {
            AutoMLImageLabelerOptions.Builder(localModel)
        }
    // Evaluate your model in the Firebase console to determine an appropriate threshold.
    val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
    val labeler = ImageLabeling.getClient(options)
}

জাভা

RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
        .addOnSuccessListener(new OnSuccessListener() {
            @Override
            public void onSuccess(Boolean isDownloaded) {
                AutoMLImageLabelerOptions.Builder optionsBuilder;
                if (isDownloaded) {
                    optionsBuilder = new AutoMLImageLabelerOptions.Builder(remoteModel);
                } else {
                    optionsBuilder = new AutoMLImageLabelerOptions.Builder(localModel);
                }
                AutoMLImageLabelerOptions options = optionsBuilder
                        .setConfidenceThreshold(0.0f)  // Evaluate your model in the Firebase console
                                                       // to determine an appropriate threshold.
                        .build();

                ImageLabeler labeler = ImageLabeling.getClient(options);
            }
        });

যদি আপনার শুধুমাত্র একটি রিমোটলি-হোস্টেড মডেল থাকে, তাহলে আপনার মডেল-সম্পর্কিত কার্যকারিতা অক্ষম করা উচিত—যেমন, ধূসর-আউট অথবা আপনার UI এর কিছু অংশ লুকানো—যতক্ষণ না আপনি নিশ্চিত হন যে মডেলটি ডাউনলোড হয়েছে। আপনি মডেল ম্যানেজারের download() পদ্ধতিতে একজন শ্রোতা সংযুক্ত করে এটি করতে পারেন:

কোটলিন

RemoteModelManager.getInstance().download(remoteModel, conditions)
    .addOnSuccessListener {
        // Download complete. Depending on your app, you could enable the ML
        // feature, or switch from the local model to the remote model, etc.
    }

জাভা

RemoteModelManager.getInstance().download(remoteModel, conditions)
        .addOnSuccessListener(new OnSuccessListener() {
            @Override
            public void onSuccess(Void v) {
              // Download complete. Depending on your app, you could enable
              // the ML feature, or switch from the local model to the remote
              // model, etc.
            }
        });

2. ইনপুট ইমেজ প্রস্তুত করুন

তারপর, আপনি যে প্রতিটি ছবির জন্য লেবেল করতে চান, তার জন্য আপনার ছবি থেকে একটি InputImage অবজেক্ট তৈরি করুন। যখন আপনি একটি Bitmap ব্যবহার করেন অথবা যদি আপনি camera2 API ব্যবহার করেন, তাহলে YUV_420_888 media.Image ব্যবহার করেন, যা সম্ভব হলে সুপারিশ করা হয়, তখন ইমেজ লেবেলারটি দ্রুততম চলে।

আপনি বিভিন্ন উৎস থেকে একটি InputImage অবজেক্ট তৈরি করতে পারেন, প্রতিটি নীচে ব্যাখ্যা করা হয়েছে।

একটি media.Image ব্যবহার করা হচ্ছে। চিত্র

একটি media.Image অবজেক্ট থেকে একটি InputImage অবজেক্ট তৈরি করতে, যেমন যখন আপনি একটি ডিভাইসের ক্যামেরা থেকে একটি ছবি ক্যাপচার করেন, তখন media.Image অবজেক্ট এবং ছবির ঘূর্ণন InputImage.fromMediaImage() এ পাস করুন।

আপনি যদি CameraX লাইব্রেরি ব্যবহার করেন, তাহলে OnImageCapturedListener এবং ImageAnalysis.Analyzer ক্লাসগুলি আপনার জন্য ঘূর্ণন মান গণনা করবে।

কোটলিন

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

জাভা

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

যদি আপনি এমন কোনও ক্যামেরা লাইব্রেরি ব্যবহার না করেন যা আপনাকে ছবির ঘূর্ণন ডিগ্রী দেয়, তাহলে আপনি ডিভাইসের ঘূর্ণন ডিগ্রী এবং ডিভাইসে ক্যামেরা সেন্সরের ওরিয়েন্টেশন থেকে এটি গণনা করতে পারেন:

কোটলিন

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

জাভা

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

তারপর, media.Image অবজেক্ট এবং ঘূর্ণন ডিগ্রি মান InputImage.fromMediaImage() এ পাস করুন:

কোটলিন

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

একটি ফাইল URI ব্যবহার করা হচ্ছে

একটি ফাইল URI থেকে একটি InputImage অবজেক্ট তৈরি করতে, অ্যাপের প্রসঙ্গটি পাস করুন এবং URI ফাইলটি InputImage.fromFilePath() এ দিন। যখন আপনি ACTION_GET_CONTENT ইন্টেন্ট ব্যবহার করে ব্যবহারকারীকে তাদের গ্যালারি অ্যাপ থেকে একটি ছবি নির্বাচন করতে অনুরোধ করেন তখন এটি কার্যকর।

কোটলিন

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

একটি ByteBuffer বা ByteArray ব্যবহার করা

ByteBuffer অথবা ByteArray থেকে InputImage অবজেক্ট তৈরি করতে, প্রথমে media.Image ইনপুটের জন্য পূর্বে বর্ণিত চিত্রের ঘূর্ণন ডিগ্রি গণনা করুন। তারপর, বাফার বা অ্যারে দিয়ে InputImage অবজেক্ট তৈরি করুন, ছবির উচ্চতা, প্রস্থ, রঙ এনকোডিং ফর্ম্যাট এবং ঘূর্ণন ডিগ্রি সহ:

কোটলিন

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

জাভা

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Bitmap ব্যবহার করা

একটি Bitmap অবজেক্ট থেকে একটি InputImage অবজেক্ট তৈরি করতে, নিম্নলিখিত ঘোষণাটি করুন:

কোটলিন

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

ছবিটি ঘূর্ণন ডিগ্রি সহ একটি Bitmap বস্তু দ্বারা উপস্থাপিত হয়।

৩. ইমেজ লেবেলারটি চালান

একটি ছবিতে অবজেক্ট লেবেল করার জন্য, image অবজেক্টটিকে ImageLabeler এর process() পদ্ধতিতে পাস করুন।

কোটলিন

labeler.process(image)
        .addOnSuccessListener { labels ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

জাভা

labeler.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
            @Override
            public void onSuccess(List<ImageLabel> labels) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

৪. লেবেলযুক্ত বস্তু সম্পর্কে তথ্য পান

যদি ইমেজ লেবেলিং অপারেশন সফল হয়, ImageLabel অবজেক্টের একটি তালিকা সাকসেস লিসেনারের কাছে পাঠানো হয়। প্রতিটি ImageLabel অবজেক্ট এমন কিছু উপস্থাপন করে যা ছবিতে লেবেল করা ছিল। আপনি প্রতিটি লেবেলের টেক্সট বর্ণনা, ম্যাচের কনফিডেন্স স্কোর এবং ম্যাচের ইনডেক্স পেতে পারেন। উদাহরণস্বরূপ:

কোটলিন

for (label in labels) {
    val text = label.text
    val confidence = label.confidence
    val index = label.index
}

জাভা

for (ImageLabel label : labels) {
    String text = label.getText();
    float confidence = label.getConfidence();
    int index = label.getIndex();
}

রিয়েল-টাইম পারফর্ম্যান্স উন্নত করার টিপস

আপনি যদি রিয়েল-টাইম অ্যাপ্লিকেশনে ছবি লেবেল করতে চান, তাহলে সেরা ফ্রেমরেট অর্জনের জন্য এই নির্দেশিকাগুলি অনুসরণ করুন:

  • যদি আপনি Camera অথবা camera2 এপিআই ব্যবহার করেন, তাহলে ইমেজ লেবেলারে থ্রোটল কল আসবে। ইমেজ লেবেলার চলাকালীন যদি নতুন ভিডিও ফ্রেম পাওয়া যায়, তাহলে ফ্রেমটি ফেলে দিন। উদাহরণের জন্য কুইকস্টার্ট স্যাম্পল অ্যাপে VisionProcessorBase ক্লাসটি দেখুন।
  • যদি আপনি CameraX API ব্যবহার করেন, তাহলে নিশ্চিত করুন যে ব্যাকপ্রেসার কৌশলটি তার ডিফল্ট মান ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST তে সেট করা আছে। এটি নিশ্চিত করে যে একবারে বিশ্লেষণের জন্য শুধুমাত্র একটি ছবি সরবরাহ করা হবে। বিশ্লেষক ব্যস্ত থাকাকালীন যদি আরও ছবি তৈরি করা হয়, তাহলে সেগুলি স্বয়ংক্রিয়ভাবে বাদ দেওয়া হবে এবং সরবরাহের জন্য সারিবদ্ধ করা হবে না। ImageProxy.close() কল করে বিশ্লেষণ করা ছবিটি বন্ধ হয়ে গেলে, পরবর্তী সর্বশেষ ছবিটি সরবরাহ করা হবে।
  • যদি আপনি ইনপুট ছবিতে গ্রাফিক্স ওভারলে করার জন্য ইমেজ লেবেলারের আউটপুট ব্যবহার করেন, তাহলে প্রথমে ML Kit থেকে ফলাফলটি পান, তারপর ইমেজটি রেন্ডার করুন এবং এক ধাপে ওভারলে করুন। এটি প্রতিটি ইনপুট ফ্রেমের জন্য শুধুমাত্র একবার ডিসপ্লে সারফেসে রেন্ডার করে। উদাহরণের জন্য কুইকস্টার্ট নমুনা অ্যাপে CameraSourcePreview এবং GraphicOverlay ক্লাসগুলি দেখুন।
  • যদি আপনি Camera2 API ব্যবহার করেন, তাহলে ImageFormat.YUV_420_888 ফর্ম্যাটে ছবি তুলুন। যদি আপনি পুরোনো ক্যামেরা API ব্যবহার করেন, তাহলে ImageFormat.NV21 ফর্ম্যাটে ছবি তুলুন।