תיוג תמונות באמצעות מודל שאומן על ידי AutoML ב-Android
אחרי שמאמנים מודל משלכם באמצעות AutoML Vision Edge, אפשר להשתמש בו באפליקציה כדי לתייג תמונות. יש שתי דרכים לשלב מודלים שהודרכו על ידי AutoML Vision Edge: אפשר לארוז את המודל ולהוסיף אותו לתיקיית הנכסים של האפליקציה, או להוריד אותו באופן דינמי מ-Firebase.אפשרויות של חבילות מודלים | |
---|---|
חבילה באפליקציה |
|
אירוח ב-Firebase |
|
רוצה לנסות?
- כדאי לנסות את האפליקציה לדוגמה כדי לראות דוגמה לשימוש ב-API הזה.
לפני שמתחילים
1. בקובץbuild.gradle
ברמת הפרויקט, חשוב לכלול את מאגר Maven של Google גם בקטע buildscript
וגם בקטע allprojects
.2. מוסיפים את יחסי התלות של ספריות ML Kit ל-Android לקובץ ה-Gradle ברמת האפליקציה של המודול, שבדרך כלל הוא
app/build.gradle
:
כדי לקבץ מודל עם האפליקציה:
dependencies { // ... // Image labeling feature with bundled automl model implementation 'com.google.mlkit:image-labeling-automl:16.2.1' }
linkFirebase
:
dependencies { // ... // Image labeling feature with automl model downloaded // from firebase implementation 'com.google.mlkit:image-labeling-automl:16.2.1' implementation 'com.google.mlkit:linkfirebase:16.0.1' }
1. טעינת המודל
הגדרת מקור מודל מקומי
כדי לצרף את המודל לאפליקציה:1. מחלצים את המודל ואת המטא-נתונים שלו מהארכיון בפורמט zip שהורדתם ממסוף Firebase. מומלץ להשתמש בקבצים כפי שהורדת אותם, ללא שינוי (כולל שמות הקבצים).
2. כוללים את המודל ואת קובצי המטא-נתונים שלו בחבילת האפליקציה:
א. אם אין לכם תיקיית נכסים בפרויקט, תוכלו ליצור אותה בלחיצה לחיצה ימנית על התיקייה
app/
ואז על New > Folder > Assets Folder.ב. יוצרים תיקיית משנה בתיקיית הנכסים שתכלול את קובצי המודל.
ג. מעתיקים את הקבצים
model.tflite
, dict.txt
ו-manifest.json
לתיקיית המשנה (כל שלושת הקבצים חייבים להיות באותה תיקייה).3. מוסיפים את הקטע הבא לקובץ
build.gradle
של האפליקציה כדי לוודא ש-Gradle לא ילחץ את קובץ המודל בזמן ה-build של האפליקציה:
android { // ... aaptOptions { noCompress "tflite" } }
הערה: החל מגרסה 4.1 של הפלאגין של Android Gradle, הקידומת .tflite תתווסף לרשימה noCompress כברירת מחדל ולא תצטרכו לבצע את הפעולות שלמעלה.
4. יוצרים אובייקט
LocalModel
ומציינים את הנתיב לקובץ המניפסט של המודל:
val localModel = AutoMLImageLabelerLocalModel.Builder() .setAssetFilePath("manifest.json") // or .setAbsoluteFilePath(absolute file path to manifest file) .build()
AutoMLImageLabelerLocalModel localModel = new AutoMLImageLabelerLocalModel.Builder() .setAssetFilePath("manifest.json") // or .setAbsoluteFilePath(absolute file path to manifest file) .build();
הגדרת מקור מודל שמתארח ב-Firebase
כדי להשתמש במודל שמתארח מרחוק, יוצרים אובייקט RemoteModel
ומציינים את השם שהקציתם למודל כשפרסמתם אותו:
// Specify the name you assigned in the Firebase console. val remoteModel = AutoMLImageLabelerRemoteModel.Builder("your_model_name").build()
// Specify the name you assigned in the Firebase console. AutoMLImageLabelerRemoteModel remoteModel = new AutoMLImageLabelerRemoteModel.Builder("your_model_name").build();
לאחר מכן, מפעילים את המשימה של הורדת המודל ומציינים את התנאים שבהם רוצים לאפשר הורדה. אם המודל לא נמצא במכשיר או אם יש גרסה חדשה יותר של המודל, המשימה תוריד את המודל מ-Firebase באופן אסינכררוני:
val downloadConditions = DownloadConditions.Builder() .requireWifi() .build() RemoteModelManager.getInstance().download(remoteModel, downloadConditions) .addOnSuccessListener { // Success. }
DownloadConditions downloadConditions = new DownloadConditions.Builder() .requireWifi() .build(); RemoteModelManager.getInstance().download(remoteModel, downloadConditions) .addOnSuccessListener(new OnSuccessListener() { @Override public void onSuccess(@NonNull Task task) { // Success. } });
באפליקציות רבות, משימה ההורדה מתחילה בקוד האיניציאליזציה, אבל אפשר לעשות זאת בכל שלב לפני שמשתמשים במודל.
יצירת כלי לתיוג תמונות מהמודל
אחרי שמגדירים את מקורות המודלים, יוצרים אובייקט ImageLabeler
מאחד מהם.
אם יש לכם רק מודל בחבילה מקומית, פשוט יוצרים מכשיר לתיוג מהאובייקט AutoMLImageLabelerLocalModel
ומגדירים את סף ציון הוודאות הנדרש (ראו בדיקת המודל):
val autoMLImageLabelerOptions = AutoMLImageLabelerOptions.Builder(localModel) .setConfidenceThreshold(0) // Evaluate your model in the Firebase console // to determine an appropriate value. .build() val labeler = ImageLabeling.getClient(autoMLImageLabelerOptions)
AutoMLImageLabelerOptions autoMLImageLabelerOptions = new AutoMLImageLabelerOptions.Builder(localModel) .setConfidenceThreshold(0.0f) // Evaluate your model in the Firebase console // to determine an appropriate value. .build(); ImageLabeler labeler = ImageLabeling.getClient(autoMLImageLabelerOptions)
אם יש לכם מודל שמתארח מרחוק, תצטרכו לוודא שהוא הורדה לפני שתפעילו אותו. אפשר לבדוק את הסטטוס של המשימה להורדת המודל באמצעות השיטה isModelDownloaded()
של מנהל המודל.
צריך לאשר את זה רק לפני שמפעילים את הכלי לתיוג, אבל אם יש לכם גם מודל שמתארח מרחוק וגם מודל שמצורף לחבילה מקומית, כדאי לבצע את הבדיקה הזו כשיוצרים את המכונה של הכלי לתיוג תמונות: יוצרים מכונה מהמודל המרוחק אם הוא הועלה, וממודל מקומי אחרת.
RemoteModelManager.getInstance().isModelDownloaded(remoteModel) .addOnSuccessListener { isDownloaded -> val optionsBuilder = if (isDownloaded) { AutoMLImageLabelerOptions.Builder(remoteModel) } else { AutoMLImageLabelerOptions.Builder(localModel) } // Evaluate your model in the Firebase console to determine an appropriate threshold. val options = optionsBuilder.setConfidenceThreshold(0.0f).build() val labeler = ImageLabeling.getClient(options) }
RemoteModelManager.getInstance().isModelDownloaded(remoteModel) .addOnSuccessListener(new OnSuccessListener() { @Override public void onSuccess(Boolean isDownloaded) { AutoMLImageLabelerOptions.Builder optionsBuilder; if (isDownloaded) { optionsBuilder = new AutoMLImageLabelerOptions.Builder(remoteModel); } else { optionsBuilder = new AutoMLImageLabelerOptions.Builder(localModel); } AutoMLImageLabelerOptions options = optionsBuilder .setConfidenceThreshold(0.0f) // Evaluate your model in the Firebase console // to determine an appropriate threshold. .build(); ImageLabeler labeler = ImageLabeling.getClient(options); } });
אם יש לכם רק מודל שמתארח מרחוק, עליכם להשבית את הפונקציונליות שקשורה למודל – לדוגמה, להפוך חלק מממשק המשתמש לאפור או להסתיר אותו – עד שתאשרו שהמודל הוריד. כדי לעשות זאת, צריך לצרף מאזין לשיטה download()
של מנהל המודל:
RemoteModelManager.getInstance().download(remoteModel, conditions) .addOnSuccessListener { // Download complete. Depending on your app, you could enable the ML // feature, or switch from the local model to the remote model, etc. }
RemoteModelManager.getInstance().download(remoteModel, conditions) .addOnSuccessListener(new OnSuccessListener() { @Override public void onSuccess(Void v) { // Download complete. Depending on your app, you could enable // the ML feature, or switch from the local model to the remote // model, etc. } });
2. הכנת קובץ הקלט
לאחר מכן, לכל תמונה שרוצים לתייג, יוצרים אובייקט InputImage
מהתמונה. הכלי לתיוג תמונות פועל במהירות הגבוהה ביותר כשמשתמשים ב-Bitmap
או, אם משתמשים ב-camera2 API, ב-YUV_420_888 media.Image
. מומלץ להשתמש בפורמטים האלה כשהדבר אפשרי.
אפשר ליצור אובייקט InputImage
ממקורות שונים, והסבר על כל אחד מהם מופיע בהמשך.
שימוש ב-media.Image
כדי ליצור אובייקט InputImage
מאובייקט media.Image
, למשל כשמעבירים תמונה ממצלמת המכשיר, מעבירים את האובייקט media.Image
ואת סיבוב התמונה אל InputImage.fromMediaImage()
.
אם אתם משתמשים בספרייה
CameraX, הערך של הזווית מחושב בשבילכם על ידי הכיתות OnImageCapturedListener
ו-ImageAnalysis.Analyzer
.
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
אם אתם לא משתמשים בספריית מצלמה שמספקת את מידת הסיבוב של התמונה, תוכלו לחשב אותה לפי מידת הסיבוב של המכשיר והכיוון של חיישן המצלמה במכשיר:
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
לאחר מכן מעבירים את האובייקט media.Image
ואת הערך של דרגת הסיבוב אל InputImage.fromMediaImage()
:
val image = InputImage.fromMediaImage(mediaImage, rotation)
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
שימוש ב-URI של קובץ
כדי ליצור אובייקט InputImage
מכתובת URI של קובץ, מעבירים את הקשר של האפליקציה ואת כתובת ה-URI של הקובץ ל-InputImage.fromFilePath()
. אפשר להשתמש באפשרות הזו כשמשתמשים בכוונה ACTION_GET_CONTENT
כדי לבקש מהמשתמש לבחור תמונה מאפליקציית הגלריה שלו.
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
InputImage image;
try {
image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
e.printStackTrace();
}
שימוש ב-ByteBuffer
או ב-ByteArray
כדי ליצור אובייקט InputImage
מ-ByteBuffer
או מ-ByteArray
, קודם מחשבים את מידת הסיבוב של התמונה כפי שמתואר למעלה לגבי קלט media.Image
.
לאחר מכן, יוצרים את האובייקט InputImage
עם המאגר או המערך, יחד עם הגובה, הרוחב, פורמט קידוד הצבע ומידת הסיבוב של התמונה:
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
שימוש ב-Bitmap
כדי ליצור אובייקט InputImage
מתוך אובייקט Bitmap
, צריך להצהיר על כך באופן הבא:
val image = InputImage.fromBitmap(bitmap, 0)
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
התמונה מיוצגת על ידי אובייקט Bitmap
יחד עם מעלות הסיבוב.
3. הפעלת הכלי לתיוג תמונות
כדי לתייג אובייקטים בתמונה, מעבירים את האובייקטimage
לשיטה process()
של ImageLabeler
.
labeler.process(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
labeler.process(image) .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() { @Override public void onSuccess(List<ImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. אחזור מידע על אובייקטים מתויגים
אם פעולת התיוג של התמונה תתבצע בהצלחה, רשימה של אובייקטים מסוג ImageLabel
תועבר למאזין להצלחה. כל אובייקט ImageLabel
מייצג משהו שסומן בתמונה. אפשר לקבל את תיאור הטקסט של כל תווית, את ציון האמון של ההתאמה ואת המדד של ההתאמה.
לדוגמה:
for (label in labels) { val text = label.text val confidence = label.confidence val index = label.index }
for (ImageLabel label : labels) { String text = label.getText(); float confidence = label.getConfidence(); int index = label.getIndex(); }
טיפים לשיפור הביצועים בזמן אמת
אם אתם רוצים לתייג תמונות באפליקציה בזמן אמת, כדאי לפעול לפי ההנחיות הבאות כדי להשיג את שיעורי הפריימים הטובים ביותר:
- אם אתם משתמשים ב-API
Camera
או ב-APIcamera2
, כדאי לצמצם את מספר הקריאות לכלי לתיוג תמונות. אם מסגרת וידאו חדשה זמינה בזמן שהכלי לתיוג תמונות פועל, צריך להוריד את המסגרת. דוגמה לכך מופיעה בכיתהVisionProcessorBase
באפליקציה לדוגמה במדריך למתחילים. - אם אתם משתמשים ב-API
CameraX
, חשוב לוודא ששיטת הלחץ האחורי מוגדרת לערך ברירת המחדל שלה,ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
. כך מובטח שרק תמונה אחת תישלח לניתוח בכל פעם. אם נוצרות תמונות נוספות כשהמנתח עסוק, הן יושמדו באופן אוטומטי ולא יעמדו בתור להעברה. אחרי שתמונה מסוימת נסגרת באמצעות קריאה ל-ImageProxy.close(), התמונה העדכנית הבאה תישלח. - אם משתמשים בפלט של הכלי לתיוג תמונות כדי להוסיף שכבת-על של גרפיקה לתמונה הקלט, קודם מקבלים את התוצאה מ-ML Kit, ואז מבצעים עיבוד (רנדור) של התמונה ושל שכבת-העל בשלב אחד. המערכת מבצעת רינדור של התמונה על פני המסך רק פעם אחת לכל מסגרת קלט. לדוגמה, תוכלו לעיין בכיתות
CameraSourcePreview
ו-GraphicOverlay
באפליקציית הדוגמה למדריך למתחילים. - אם אתם משתמשים ב-Camera2 API, כדאי לצלם תמונות בפורמט
ImageFormat.YUV_420_888
. אם משתמשים ב-Camera API הקודם, צריך לצלם תמונות בפורמטImageFormat.NV21
.